cogall JLd el
AL al-Bayt University

AL al-Bayt University
Prince Hussein bin Abdullah Faculty of Informatibechnology
Computer Science Department

THE PNZ SOFTWARE RELIABILITY MODEL REVISITED

By
KHALID HASSAN MOHAMED EDRIS
Enrollment No.: 0620901016

SUPERVISOR
DR. OMAR SHATNAWI

December 2009

www.manaraa.com

THE PNZ SOFTWARE RELIABILITY MODEL REVISITED

Clina sl Jgad (PNZ) 358 b il e

By
KHALID HASSAN MOHAMED EDRIS
Enrollment No.: 0620901016

SUPERVISOR

Dr. OMAR SHATNAWI

The members of Committee discussion signature =
DR. OMAR SHATNAWI E{fz‘l!ﬁ ﬁ
PROF.DR. ADNAN AL-SMADI Aeloan AL

DR. KHALED BATIHA

DR. RAED SHATNAWI f.l:%'}-

Submitted this thesis to complement the requirements for obtaining a
master’s degree in computer science at the Faculty of Prince Hussein bin
Abdullah Information Technology at the Al-albayt University

Discussed and recommended / modify / reject on %" Wl

www.manaraa.com

Dedication

To my dear mother

To my dear father

To my Faithful wife

To my son

To my brothers and sisters
To all my family

To my friends

To all my teachers

| dedicate them this research.

www.manaraa.com

iii
Acknowledgment

| express my thanks and appreciation to Dr. Omaatr&twi who prefer to
supervise this thesis, and thank him for the effioaide for me, and what | found his
support, respect, appreciation, cooperation, amyéocome the difficulties that stood in
my way during the preparation of this thesis.

| thank the members of the Committee discussiotherapproval to discuss this

thesis and to evaluate it.

www.manaraa.com

Contents

Title [
Dedication ii
Acknowledgment i
Tables list v
Figures list. Vi
Appendixes list Vil
Abstract viii
1. Introduction and Overview, 1
1.1 Software Reliability Engineering 2

1.2 Software versus Hardware Reliahility 5

1.3 Software Engineering 6

1.3.1 Software Life-Cycle 6

1.3.2 Software Verification and Validiatian 7

1.4 Software Reliability Measurement. 8

1.4.1 Definition of Software Reliability 8

1.4.2 Fault/Failure Data Collection 10

1.5 Software Reliability Modelling 10

1.6 Basic Definitions and Acronyms Used 12

1.7 Structure of the Thesis. 14

2. Software Reliability Modelling: Literature Review 15

2.1 NHPP Models 16

2.1.1 A General Description of Continuous Tiktedel 18

2.1.2 A General Description of Discrete Timedéh 19

2.1.3 Comments on Using NHRE. 20

2.2 Some NHPP based SRGMs. 21

2.2.1 Exponential Model 22

2.2.2 Delayed S-shaped Madel 23

2.2.3 Inflection S-shaped Models. 23

2.2.4 Imperfect Debugging Model 26

2.2.5 Fault Generation Model 26

2.2.6 PNZ Model 27

3. Proposed Model 29
3.1 Model Development 30

Model Assumptions 30

Model Formulation 30

3.2 Discrete Version of the Proposed Madel 32

4. Model Validation and Comparison Criteria 33
4.1 Model Validation 33

4.2 Comparison Criteria 34

4.2 Software Reliability Evaluation Measures. 36

4.3 Parameter Estimation Technigue 36

5. Data Analyses and Model Comparsian 38

5.1 First Project Development Project 38

5.2 Second Project Development Prajact 41

5.3 Third Project Development Project 44

5.4 Fourth Project Development Project. a7

6. Conclusions. 50
References 51
Appendixes 53

www.manaraa.com

Tables list
Table No. Description Page
5.1 Parameters Estimations (for DS-I) 38
5.2 Parameters Estimations (for DS-II) 4]
5.3 Parameters Estimations (for DS-II) 44
5.4 Parameters Estimations (for DS-IV) iy

www.manaraa.com

Vi

Figures list
Figure No. Description Page
51.1 Faults identification curve for (DS-1) 39
5.1.2 Predictive validity curve for (DS-I) 39
5.1.3 Remaining faults curve for (DS-I) 40
5.1.4 Reliability curve for (DS-I) 40
5.2.1 Faults identification curve for (DS-11)| 42
5.2.2 Predictive validity curve for (DS-II) 42
5.2.3 Remaining faults curve for (DS-II) 43
5.24 Reliability curve for (DS-II) 43
5.3.1 Faults identification curve for (DS-11l) 45
5.3.2 Predictive validity curve for (DS-III) 45
5.3.3 Remaining faults curve for (DS-III) 46
5.34 Reliability curve for (DS-III) 46
54.1 Faults identification curve for (DS-1V) 48
5.4.2 Predictive validity curve for (DS-IV) 48
5.4.3 Remaining faults curve for (DS-1V) 49
54.4 Reliability curve for (DS-1V) 49

www.manaraa.com

vii

Appendixes list

Appendix No. | Description | Page
Dataset | 53
Dataset Il | 54
Dataset Ill | 55
Dataset IV | 57

AWIN|F

www.manaraa.com

viii

Abstract

In the present scenario, computer systems arsgadsable for society and their
need and importance are increasing rapidly. To ntlest increasing demand, the
complexity of the software products to construatrsaomputer systems, has enhanced
to a considerable extent. During the developmerguzh complex software systems,
many software failures may occur. To reduce thesétd, thorough testing of the
software is required so that a highly reliable wafe system can be developed. Over
the past three decades, there have been severalptdt at modeling the processes
associated with software failures based on varimugerlying assumptions related to
how software is tested. These models are colldgtikrown as software reliability
growth model (SRGMs). It is important to note thae to the complexity of software
design, it is not expected that any single modael icgorporate all factors which are
thought to influence software reliability.

In this thesis, we show how beginning with veryngie assumptions, non-
homogenous Poisson process (NHPP) type of contmtiome SRGM, are gradually
made more realistic with the incorporation of infpet debugging, involvement of a
learning-process in debugging and introduction @fvrfaults. The applicability of the
resultant generalized model is demonstrated thraayleral actual software reliability
data sets obtained from different software develpmprojects. The proposed
generalized model is also checked against differentponents of the model, including
existing one (e.g., PNZ, Inflection S-shaped, F&s#neration, Imperfect, Delayed S-
shaped, Exponential) thus highlighting its applitgb The software reliability data
sets were deliberately chosen from different tgsemvironments where the growth
curves ranging from purely exponential to highlyst&ped. The results are fairly
encouraging in terms of goodness of fit, predictiadidity and software reliability
evaluation measures.

The major contribution of this thesis is its aduction the concept of two types
of imperfect debugging during software fault remlophenomenon with logistic fault
removal rate. Most of the SRGMs discussed in therdiure seldom differentiate
between the failure observation and fault removabcgsses. In real software
development environment, the number of failureseoled need not be same as the
number of fault removed. If the number of failucdserved is more than the number of

faults removed then we have the case of imperfelstigging. Due to the complexity of

www.manaraa.com

the software system and the incomplete understgndirthe software requirements,
specifications and structure, the testing team maty be able to remove the fault
perfectly on the detection of the failure and thiginal fault may remain or get replaced
by another fault. While the first phenomenon is Wwnoasimperfect debugging, the
second is callethult generation. In case of imperfect debugging the fault-contdrthe
software is not changed, but just because of intetmmunderstanding of the software,
the detected fault is not removed completely. Butase of fault generation the fault-
content increases as the testing progresses ara/aémesults in introduction of new
faults while removing old ones. To model learnifagilt removal rate has been taken as
logistic function. Actual software reliability datated from real software development
projects have been used to demonstrate the apifiticalb the proposed model.

The results of the proposed model are encouragirigrms of goodness of fit
criteria, predictive validity criterion, and softveareliability evaluation measures for
software reliability data due to its applicabilagpd flexibility.

www.manaraa.com

Chapter 1

Introduction and Overview

Today, computer systems are indispensable in diy ldaes, and their importance
and need have increased immensely. Successful tiqmer@ any computer system
depends largely on its software components. Thasyery important to ensure the
quality of the underlying software in the senset thgerforms its functions that its
designed and built for. Software development preces often called software
development lifecycle (SDLC), because it describbeslife of a software product from
its inception to its implementation. Every softwadevelopment process includes
system requirements, as it is input and a delivereduct as its output. Many lifecycle
models have been proposed, based on the taskseaaviol developing and maintaining
software, but they all consists of the followingg#s: requirement and specification,
design and coding, testing, and operation and m@amice. Faults can be introduced
during any of these stages and hence it is noilgeds produce fault-free software due
to human imperfection. A fault occurs when a hunreakes a mistake, called an error,
in performing activities related to the softwarefaiult can reside in any development or
maintenance system. Faults manifest themselvesnmstof failures, when the software
is executed. A failure is a departure from the exys$ required behavior. It can be
discovered before or after system delivery, duriegting, or during operation and
maintenance. Testing phase in the software devedapprocess aims at detecting and
removing faults, and hence making the software meliable. It is this phase, which is
amenable to mathematical modeling.

The most used way to verify and validate the safws by testing. Software testing
involves running the software and checking for ypeeted behavior in software output.
The successful test can be considered to be onehwdveals the presence of the latent
faults. The process of locating the faults andgtesg the procedures to remove them is
called the debugging process. The chronology dfifaioccurrence and fault removals
can be utilized to provide an estimate of the safewreliability and the level of fault
content. The software reliability model is the toahich can be used to evaluate the
software quantitatively, develop test status, saleedtatus and monitor the change in

reliability performance.

www.manaraa.com

1.1 Software Reliability Engineering

Software Reliability Engineering (SRE) is a praetithat helps you develop
software that is more reliable, and helps you dmgyvet faster and cheaper. It is a
standard, proven, widespread best practice thatidely applicable to systems that
include software. Software reliability engineerisgow in cost and its implementation
has virtually no schedule impact (Musa, 2004).

Software reliability engineering works by quaniitaty characterizing and applying
two things about the product: the expected relaise of its functions and its required
major quality characteristics. The major quality acdcteristics are reliability,
availability, delivery date and life-cycle cost. Iapplying software reliability
engineering, you can vary the relative emphasisptage on these factors. When you
have characterized use, software reliability engjimg guides you in substantially
increasing development efficiency by focusing reses on functions in proportion to
use and criticality. It also maximizes test effrmg by making test highly representative
of use in the field. Increased efficiency increaseseffective resource pool available to
add customer value. Software reliability enginegisicentered around a very important
software attribute: reliability. Software relialyliis one of the attributes of software
guality, a multidimensional property including oth@istomer satisfaction factors like
functionality, usability, performance, servicedili capability, installability,
maintainability and documentation (Musa, 2004).

Software Reliability should be defined as the plolitst of failure-free software
operation for a specified period of time in a spedienvironment (ANSI/IEEE, 1991).
Software Reliability is generally accepted as thg factor in software quality since it
guantifies software failures—the most unwanted ewdnch makes software useless or
even harmful to the whole system and malfunctiorsnfjware may Kill people. As a
result, it is regarded the most important factantabuting to customer satisfaction. In
fact, ISO 9000-3 specifies field failures as theibaequirement for quality metrics
(Lyu, 1996).

Achieving highly reliable software in the custorsguerspective is a demanding job to
all software engineers and reliability engineers.

Four technical methods are applicable to achieliabte software systems (Lyu,
1996):

www.manaraa.com

e Fault Avoidance. The interactive refinement of the user's systequirement,
the engineering of the software specification psscehe use of good software design
methods, the enforcement of structured programmisgpline and the encouragement
of writing clear code are the general approachesvtid faults in the software. These
guidelines have been, and will continue to be ftimelamental techniques in preventing
software faults from being created.

Recently, formal methods have been attempted ingbearch community in attacking
the software quality problem. In formal-methods maghes, requirement specifications
are developed and maintained using mathematicaltkable languages and tools.
Current studies in this area have been focusedoguhge issues and environmental
supports, which include at least the following goal

1. Executable specifications for systematic and peeeisluation,

2. Proof mechanisms for software verification anddeidiion, and

3. Development procedures which follow incrementalnerhent for step-by-step

verification.

Every work item, be it a specification or a tessesais subject to mathematically
verification for its correctness and appropriatenes

Another fault avoidance technique, particularly yplap in the software development
community, is software reuse. The crucial measwofesuccess in this area are the
capability to prototype and evaluate reusable sgithtechniques. This is why Object-
Oriented Paradigms and Techniques are receivinghnattention nowadays—Ilargely
due to their inherent properties in enforcing saf@vreuse.

e Fault Removal. When formal methods are in full swing, formal dgsproofs
might be available to achieve mathematical proetartectness for programs. Also
fault-monitoring assertions could be employed thfoexecutable specifications, and
test cases could be automatically generated tewaehefficient software verification.
However, before this happens, practitioners willehto rely mostly on software testing
techniques to remove existing faults. Microsoft,dgample, allocates as many software
testers as software developers, and employs a {budgstem which binds the
developer of every software component with itsetle$br their daily work. The key
question to reliability engineers, then, is howde&rive testing quality measures (e.qg.,
test coverage factors) and establish their relahigns to reliability.

www.manaraa.com

Another practical fault removal scheme which hasnbeidely implemented in industry
is formal inspection. A formal inspection is a nigas process focused on finding faults,
correcting faults and verifying the corrections.riRal inspection is carried out by a
small group of peers with a vested interest invileek product during pretest phases of
the lifecycle. Many companies have claimed its sgscLyu, 1996).

e Fault Tolerance. Fault tolerance is the survival attribute of conipgitsystems
or software in their ability to deliver continuossrvice to their users in the presence of
faults. Software fault tolerance is concerned witlthe techniques necessary to enable
a system to tolerate software faults remainindghendystem after its development. These
software faults may or may not manifest themsetiiggng system operations, but when
they do, software fault tolerance techniques shpué¥ide the necessary mechanisms
to the software system to prevent system failuwenfoccurring.

In a single-version software environment, the tespnes for partially tolerating software
design faults include monitoring techniques, atamyiof actions, decision verification
and exception handling. In order to fully recovemh activated design faults, multiple
versions of software developed via design diversitne introduced, in which
functionally equivalent yet independently develogetiware versions are applied in the
system to provide ultimate tolerance to softwarsigte faults. The main approaches
include the recovery blocks technique, the N-vergomgramming technique and the N
self-checking programming technique. These appemdtave found a wide range of
applications in the aerospace industry, the nucpeawer industry, the health care
industry, the telecommunications industry and tfeeigd transportation industry.

e Fault\Failure Forecasting. Fault\failure forecasting involves formulation bkt
fault\failure relationship, an understanding of tloperational environment, the
establishment of reliability models, the collectioh failure data, the application of
reliability models by tools, the selection of apmiate models, the analysis and
interpretation of results, and the guidance for ag@ment decisions. This has been the
main focus of Software Reliability Modelling.

Due to the intrinsic complexity of modern softwasgstems, software reliability
engineers have to apply a combination of the almosthods for the delivery of reliable
software systems. These four areas are also the timame of the state of the art for

software engineering covering a wide range of gisas.

www.manaraa.com

Who has used Software Reliability Engineering?

ATandT's International Definity project shows thenbfits that result from applying
SRE and related technologies. In comparison wigitesious release that did not use
these technologies, reliability, customer satisfectind sales all increased by a factor
of 10. The system test interval and test costsedsed by a factor of two; project
development time by 30% and maintenance costsfagtar of 10. Other organizations
such as Alcatel, Bellcore, CNES (France), ENEAIy)taEricsson Telecom, France
Telecom, Hewlett Packard, Hitachi, IBM, Lockheed+kitg Lucent Technologies,
Microsoft, Mitre, Motorola, NASA's Jet Propulsiorahoratory, NASA's Space Shuttle,
Nortel, Raytheon, Saab Military Aircraft, Tandemruuters, the US Air Force and the
US Marine Corps have also used SRE profitably (11\296).

1.2 Software versus Hardware Reliability

Software reliability is similar to hardware relifityi in that both are stochastic processes
and can be described by probability distributiorwever, software reliability is
different from hardware reliability in the sensattBoftware does not wear out, burn out
or deteriorate, i.e., its reliability does not dease with time. Moreover, software
generally enjoys reliability growth during testiagd operation since software faults can
be detected and removed when software failuresroGuthe other hand, software may
experience reliability decrease due to abrupt chsangf its operational usage or
incorrect modifications to the software. Software also continuously modified
throughout its lifecycle. The malleability of sotive makes it inevitable for us to
consider variable failure rates.

Unlike hardware faults which are mostly physicallfs, software faults are design
faults which are harder to visualize, classify,edétand correct. As a result, software
reliability is a much more difficult measure to aint and analyze than hardware
reliability. Usually hardware reliability theory lres on the analysis of stationary
processes, because only physical faults are caesidelowever, with the increase of
systems complexity and the introduction of desigults in software, reliability theory
based on stationary process becomes unsuitablddiess non-stationary phenomena
such as reliability growth or reliability decreaseperienced in software. This makes
software reliability a challenging problem whichqoeres an employment of several
methods to attack (Lyu, 1996).

www.manaraa.com

Because of this difference in the effect of faustsftware reliability must be defined
differently from hardware reliability. When hardwais repaired, it is returned to its
previous level of reliability; the hardware’s rddiity is maintained. But when the
software is repaired, its reliability may actualhgcrease or decrease. Thus, the goal of
hardware reliability engineering is stability; tgeal of software reliability engineering
is reliability growth (Pfleeger, 2006).

1.3 Software Engineering

Developing software system is generally a quite glesnand time consuming process.
Moreover, the nature of and complexity of softwaeguirements have drastically
changed in the last few decades and users alltbeeworld have become much more
demanding in terms of cost, schedule quality. Thésee parameters, all being
desirable, have an apparent contradiction at timks&h can only be resolved by
optimum design of software using well establisheftigare engineering methodologies.
Software Engineering Methodologies constitute treemework that guides software
developers in optimally developing the softwaretays. These frameworks define the
different phases of software development (such lasnmg, requirements analysis,
design testing and maintenance). The choice oftwimethodology to use in a specific
development process is closely related to the sammplexity, reliability and
maintainability of the software, and to the enviremt it is supposed to function in.
Software cost now forms the major component ofrapagter system'’s cost. Software is
currently expensive to develop and is often unbédia The goal of the software
engineering is to face this “software problem”. td@fre is not just a set of computer
programs but comprises programs and associatedddtdocumentation.

The main problems for software development curyeaté: high cost, low quality, and
frequent changes causing rework. Software engimges the discipline that aims to

provide methods and procedures for developing soé&wystems (Lyu, 1996).

1.3.1 Software Life-Cycle

A software lifecycle provides a systematic approsxideveloping, using, operating,
and maintaining a software system. The standarcElEEmputer Dictionary has

defined the software lifecycle as: “That period tohe in which the software is

www.manaraa.com

conceived, developed and used.” There are manerdiif definitions of software
lifecycle (Pfleeger, 2006), (Pressman, 2001).

A software lifecycle consists of the following fiveuccessive phases: analysis
(requirements and functional specifications), desapding, testing and operating. The
analysis phasas the first step in the software development essc It is also the most
important phase in the whole process and the fdiordaf building a successful
software product. The purpose of the analysis pisase define the requirements and
provides specifications for the subsequent phaedsaativities. Thedesign phaseis
concerned with building the system to perform apumed. There are two stages of
design: system architecture design and detailegjleShe system architecture design
includes system structure and the system archreadecument. System structure
design is the process of partitioning a softwargtesy into smaller parts. The system
architecture document describes system componentissystems and interfaces.
Detailed design is about designing the program tlwedalgorithmic detailsCoding
involves translating the design into the code gfragramming language, beginning
when the design document is baselined. Coding dsegof the following activities:
identifying reusable modules, code editing, codgpaction and final test planning.
Testing is the verification and validation activity fordlsoftware product. The goals of
the testing phase are: to affirm the quality of gmeduct by finding and eliminating
faults in the program, to demonstrate the presef@d specified functionality in the
product, and to estimate the operational religbit the software. During th&esting
phase program components are combined into the oveddtivare code and testing is
preformed according to a developed test (Softwaeafidation and Validation) plan.
The final phase in the software lifecycle aperation. The operating phase usually

contains activates such as installation, traingogyport and maintenance (Lyu, 1996).

1.3.2 Software Verification and Validation

Verification and Validation (VV) are two ways toetk whether the design satisfies the
user’s requirements. According to (ANSI/IEEE, 1991)

Software Verification is the process of evaluating a system or compadoetietermine
whether the products of a given development phaisefsthe conditions imposed at the

start of that phaseSoftware Validation is the process of evaluating a system or

www.manaraa.com

component during or at the end of the developmeotgss to determine whether it

satisfies specified requirements (Lyu, 1996).

1.4 Software Reliability Measurement

Software reliability measurement includes two typésictivities, reliability estimation
and reliability prediction:

¢ Reliability Estimation. This activity determines current software relidpiby
applying statistical inference techniques to falalata obtained during system test or
operation. This is a measure regarding the achieskability from the past until the
current point. Its main purpose is to assess thewureliability and determine whether
a reliability model is a good fit in retrospect.

e Reliability Prediction. This activity determines future software relidlyilbbased
upon available software metrics and measures. Rigpgon the software development
stage, prediction involves different techniques:

When failure data are available (e.g., softwara isystem test or operation stage), the
estimation techniques can be used to parametende varify software reliability
models, which can perform future reliability prettba. This definition is also referred
to asReliability Prediction.

When failure data are not available (e.g., software the design or coding stage), the
metrics obtained from the software development ggsand the characteristics of the
resulting product can be used to determine reltgbif the software upon testing or
delivery. This is referred to &arly Prediction.

Most current Software Reliability Models (SRMs)Ifad the estimation category to do
reliability prediction. Nevertheless, a few earlyegiction models were proposed and
described in the literature. An SRM specifies teaayal form of the dependence of the
failure process on the principal factors that affiécfault introduction, fault removal

and the operational environment.

1.4.1 Definition of Software Reliability
The three major components in the definition oftwafe reliability: time, failure and

operational environment:

e Time. Reliability quantities are defined with respect time, although it is
possible to define them with respect to other bdkesprogram runs. We are concerned

www.manaraa.com

with three types of time: the execution time faadtware system is the CPU time that is
actually spent by the computer in executing théwsok, the calendar time is the time
people normally experience in terms of days, weeks)ths, etc., and the clock time is the
elapsed time from start to end of computer exeguticunning the software. In measuring
clock time, the periods during which the compuseshut down are not counted.

It is generally accepted that execution time is enadequate than calendar time for
software reliability measurement and modelling. ldwer, reliability quantities must

ultimately be related back to calendar time foryelasman interpretation, particularly

when managers, engineers, and customers want t@acenthem across different

systems. As a result, translations between caletidee and execution time are

required. The technique for such translations iscdieed in (Musa et al., 1987). If

execution time is not readily available, approxim@é such as clock time, weighted
clock time, staff working time, or units that aratural to the application, such as
transactions or test cases executed, may be used.

e Failure. A Software failure is an incorrect result withpest to the specification
or an unexpected software behavior perceived byuser at the boundary of the
software system, while a software fault is the tdexd or hypothesized cause of the
software failure.

When a time basis is determined, failures can bgresged in several ways: the
cumulative failure function, the failure intensftynction, the failure rate function and the
mean time to failure function. The cumulative feldunction (also called the mean value
function) denotes the average cumulative failusso@ated with each point of time. The
failure intensity function represents the ratetwdrmge of the cumulative failure function.
The failure rate function (or called the hazara rair the rate of occurrence of failures)
is defined as the instantaneous failure rate ama t, given that the system has not
failed up tot. The mean time to failure (MTTF) function repretsethe expected time
that the next failure will be observed. (MTTF is@lknown as MTBF, mean time
between failures.) Note that the above four measare closely-related and could be

translated with one another.

e Operational Profile. The operational profile of a system is definedhesget of
operations that the software can execute alongtwélprobability with which they will

occur. An operation is a group of runs which typicavolve similar processing.

www.manaraa.com

10

1.4.2 Fault/Failure Data Collection

Two types of failure data, namely, failure-countadand time-between-failures data,
can be collected for the purpose of software réitghmeasurement. Failure-count (or
failures per time period) data tracks the numbefad@ires observed per unit of time.
Time-between-failures (or inter-failure times) datacks the intervals between
consecutive failures.

These data are usually used by practitioners whatyzing and predicting reliability
applications. Some software reliability models bamdle both types of data. The time-
between-failures approach involves recording thdividual times at which failure
occurred. The failure-count approach characterizedounting the number of failures
occurring during a fixed period (e.g., test sessimur, week, day). Using this method,
the collected data are a count of the number dérs in the interval. The time-
between-failures approach always provides higheuracy in the parameters estimates
with current tools but involves more data collectiefforts than the interval approach.
The practitioners must trade off the cost of datiéection with the accuracy reliability
level required by the model predictions.

Many reliability modelling programs have the cafigbto estimate model parameters
from either failure-count or time-between-failuretata, as statistical modeling
techniques can be applied to both (Lyu, 1996), @es al., 1987), (Musa, 2004),
(Pham, 2000), (Pfleeger, 2006). However, if a pprogaccommodates only one type of
data, it may be required to transform the otheetyp the expected input is failure-
count data, it may be obtained by transforming tbetwveen-failures data to cumulative
failure times and then simply counting the numbiefadures whose cumulative times
occur within a specified time period. If the exm@ettnput is time-between-failures data,
converting the failure-count data can be achievegdeither randomly or uniformly
allocating the failures for the specified time mtds, and then by calculating the time

periods between adjacent failures.

1.5 Software Reliability Modelling

There are two main types of software reliability dats: the deterministic and the
probabilistic, more details can be found in (Xi®91), (Kapur et al., 1999), (Pham,
2000). The deterministic model is used to studyrtbhmber of distinct operands in a

program as well as the number of errors and thebeuarof machine instructions in the

www.manaraa.com

11

program. Performance measures of the determirigiee are obtained by analyzing the
program texture and do not involve any random evdite probabilistic model
represents the failure occurrences and the famovals as probabilistic events.

The Probabilistic Software Reliability Models caa blassified into different groups
(Pham, 2000):

e Error Seeding Models. The error seeding group of models estimates the
number of errors in a program by using the mulggstaampling technique. Errors are
divided into indigenous errors and induced/seededre The unknown number of
indigenous errors is estimated from the numbemdticed errors and the ratio of the
two types of errors obtained from the debuggingdat

e Failure Rate Models. The failure rate group of models is used to sttity
program failure rate per fault at the failure ints. This group of models studies how
failure rates change at the failure time during finkure intervals. As the number of
remaining faults changes, the failure rate of ttagpmm changes accordingly. Since the
number of faults in the program is a discrete fiom;tthe failure rate of the program is
also a discrete function with discontinues at Hikife times.

e Curve Fitting Models. The curve fitting group models uses statistical
regression analysis to study the relationship betwsoftware complexity and the
number of faults in a program, the number of change failure rate. This group of
models finds a functional relationship between deeat and independent variables by
using the methods of linear regression, nonlinegrassion, or time series analysis. The
independent variables, for example, are the numddemodules changed in the

maintenance phase, time between failures, prograitssiall, program size, etc.

¢ Reliability Growth Models. The reliability growth group of models measures
and predicts the improvement of reliability progsarirough testing process. The
growth model represents the reliability or failuegde of a system as a function of time

or the number of test cases.

e Markov Structure Models. A Markov process has the property that the future
behavior of the process depends only on the custate and is independent of its past
history. The Markov structure group of modules igemeral way of representing the
failure process of software. This group of modutes also be used to study the
reliability and interrelationship of the moduled. i$ assumed that failures of the

modules are independent of each other. This assamgeems reasonable at the

www.manaraa.com

12

module level since they can be designed, codedestdd independently, but may not

be true at the system level.

e Non-Homogeneous Poisson Process (NHPP) Modelhe NHPP group of
models provides an analytical framework for desoglihe software failure-occurrence
or fault-removal phenomenon during testing. Themissue in the NHPP model is to
estimate the mean value function of the cumulativenber of failures experienced or
faults removed up to a certain point in time. Tgeup of models will be reviewed in

detail in the next chapter.

1.6 Basic Definitions and Acronyms Used

We give below the definitions of the terms and agros used in this Thesis. These
definitions are cited from (Musa, 1999), (Kapur,999 (Pfleeger, 1998) and from
research papers.

Bug. A mistake in interpreting a requirement, a syntemrein a piece of code, or the
(as-yet-unknown) cause of a system crash.

Calendar Time. Chorological time including time in which a computaay not be
running.

Clock Time. Elapsed time from start to end of a program exeosuhcluding wait time
on a running computer.

Debugging ProcessThe process of analyzing the cause of the softfedltee, locating
the faulty part of the software and implementing thecessary steps to remove the
software fault.

Deterministic. Possessing the property of having one value atendime.

Environment. The set of all possible input states/space withir tlessociated
probabilities of occurrence.

Estimation. Determination of software reliability model paraerstand quantities from
fault detection data.

Machine Execution / CPU Time.Time spent by the processor in executing a program.
Failure. A departure from the system’s required behaviocah be discovered before
or after system delivery, during testing, or durapgeration and maintenance.

Failure Intensity. Failures per natural or time unit, an alternativayveof expressing

reliability.

www.manaraa.com

13

Fault. A fault occurs when a human makes a mistake, cali&tror , in performing some
software activity. For example, a designer may milgustand a requirement and create
a design that does not match the actual interfiteoféquirement analyst and the user.
Fault Density. Faults per line of deliverable executable sounmeqLOC).
HomogenousPossessing characteristics that do not vary witke ti

Imperfect Debugging.When the debugging process does not lead to theveadrof the
cause of the failure.

Least Square Estimation.A method of parameter estimation in which the patams
are selected to minimize the sum of squares ofatiewi of the estimated failure/fault
data from the observed ones.

Maximum Likelihood Estimation. A form of parameter estimation in which the
parameters are selected that maximize the posgiltiiat the data that have been
observed could have occurred.

Mean Value Function. A function that expresses the average value ohthmeber of
events experienced by a random process at eachipaime.

Prediction. Determination of software reliability model paraemstand quantities from
characteristics of the software product and devaetay process.

Reliability. Probability that a system or a capability of a egstwill continue to
function without failure for a specified period anspecified environment. The period
may be specified in natural or time units.

Test Occasions/CasesA test case can be a single computer test run &eacn an
hour, day, week or even month. Therefore, it inekithe computer test run and length
of time spent to visually inspect the software sewrode. Whereas, a computer test run
is a set of software input variables arranged serdain manner to test the functional

performance of a particular part of the softwarstemy.

Acronyms
SRGM Software Reliability Growth Model SSE Sum of Squared Errors
NHPP Non-Homogeneous Poisson ProcessiC Akaike Information Criterion

MLE Maximum Likelihood Estimate RPE Relative Prediction Error
PGF Probability Generating Function DS Data Set
RMSPE Root Mean Square Prediction Error R? R Squared

www.manaraa.com

14

1.7 Structure of the Thesis

The following is a brief of the remaining Chapters:

Chapter 2 is divided into two Sections. Section 1 invest&gathe concepts and the
description of NHPP based SRGMs. Section 2 reviswvae of the well-documented
and established NHPP based SRGMs.

Chapter 3 is divided into two Sections. Section 1 presehts proposed model that
incorporates fault generation and imperfect debuggvith learning-process. Section 2
presents a discrete version of the proposed model.

Chapter 4 is divided into three Sections. Section 1 presémsvalidation methods in
terms of goodness-of-fit and predictive validity tmes, Section 2 derives some
important software reliability evaluation measuremd Section 3 provides the
parameters estimation technique.

Chapter 5 is divided into four Sections. All of these Sensshow the applicability of
the NHPP based SRGMs and the proposed model byiagghem on software fault-
detection-count data set cited from four real safeMdevelopment projects in terms of
goodness of fit, predictive validity and softwasmdiability evaluation measures. The
results are very encouraging due to their applitgland flexibility as they can capture
different reliability growth curves ranging fromnaly exponential to highly S-shaped.
We conclude the thesis @hapter 6.

www.manaraa.com

15

Chapter 2

Literature Review

The importance of modelling and analysis of sofewkailure-occurrence or fault-
removal phenomena has been well recognized and staidyes have addressed this
problem. An important objective of most of thesgestigations has been to develop
analytical models for the fault removal phenomemaiider to compute quantities of
interest such as the number of faults removedntheber of remaining faults and the
software reliability function. Such quantities areeful for planning purposes, in both
the development and the operational phases of dftevase systems. In particular,
software reliability models (SRMs) that describdtware failure-occurrence or fault-
removal phenomena in the system testing phaseadlex software reliability growth
models (SRGMs). The models are useful in measughapbility for the quality control
and testing process control of software developméany models have been proposed
by many researchers. A few models have actually lsmplied to several software
management tools which aid the software qualityr@rability measurement and
testing—progress control in the testing phase. Agnathers, Nonhomogeneous Poisson
process (NHPP) models have been discussed in npgoligations because the models
can be easily applied in actual software develogmeforms one of the main classes of
the existing SRGMs, due to its mathematical tralitatand wide applicability. NHPP
models are useful in describing failure procespesyiding trends such as reliability
growth and fault-content. SRGMs consider the delngggrocess as a counting process
characterized by the value function of a NHPP. \&afé reliability can be estimated
once the mean value function is determined. Modeameters are usually determined
using either Maximum Likelihood Estimation or Leaguare estimation methods.

The SRGMs are classified into two groups. The frstup contains models, which
use the machine execution (i.e., CPU) time or clentime as a unit of fault
detection/removal period. Such models are calledtimoous time models. The second
group contains models, which use the number ofdeséisions/cases as a unit of fault
detection period. Such models are called dischete mnodels, since the unit of software
fault detection period is countable. A test case ba a single computer test run

executed in an hour, day, week or even month. Towereit includes the computer test

www.manaraa.com

16

run and length of time spent to visually inspeat goftware source code. A large
number of models have been developed in the fimigwhile there are fewer in the
second group. Discrete time models in softwarealbdlty are important and a little

effort has been made in this direction.

2.1 NHPP Models

Stochastic processes are used for the descripfian system’s operation over time.
There are two main types of stochastic processastincious and discrete. Among
discrete processes, counting processes in retiatlghgineering are widely used to
describe the appearance of events in time (eiturda, number of perfect repairs, etc).
The simplest counting process is a Poisson prodéesPoisson process plays a special
role to many applications in reliability enginegri(Pham, 1999).

As a general class of well-developed stochasticgs® model in reliability engineering,
NHPP models have been successfully used in studvangware reliability problems.
They are especially useful to describe failure psses which possess certain trends
such as reliability growth and deterioration. THere, an application of NHPP models
to software reliability analysis is then easily iempented.

The model provides the expected number of fauilsfes at a given time. (Goel and
Okumoto, 1979) proposed a exponential model basedhe concept the expected
number of faults removed per unit time is proparéibto the current fault content and
(Yamada and Osaki, 1985) proposed a discrete verdidhe model. (Yamada et al.,
1983) proposed a delayed S-shaped model basedeaotizept of failure observation
and the corresponding fault removal phenomenon(Eagur et al., 1999) proposed a
discrete version of the model. (Ohba, 1984) propdbe inflection S-shaped model.
(Yamada et al., 1985), (Huang, et al.,, 2007), (Kapual., 2009) further proposed
testing-effort dependent models which assumes dséing-effort to follow either
exponential, Weibull, logistic, or Rayleigh distiion. (Kapur and Garg, 1990)
modified exponential model by introducing the cqotaaf imperfect debugging.

In the real life software development projects, lo@-uniform testing is more popular
and hence the S-shaped growth curve has been edsermany software development
projects. The cause of S-shapedness has beentatiito different reasons. (Yamada et
al., 1983) attributed it to time delay between taelt removal and the initial failure

observation which is result of the unskillednesgheftesting team at the early stages of

www.manaraa.com

17

the test. Also, (Ohba, 1984) attributed it to thetual dependency between software
faults. (Yamada et al., 1985) ascribed it to tha-oniform distribution of the testing-
effort. (Bittanti et al., 1988) accrued it to thecieased fault detection rate later in the
testing phase. (Kapur et al., 1992) ascribedtit¢édearning process of the test team.
Later, few SRGMs were developed taking into accozaises of the S-shapedness
(Kapur et al., 1999), (Pham, 2000), (Shatnawi amagu€, 2008), (Shatnawi, 2009(a)),
(Shatnawi, 2009(b)). Also some more exponential eloavere developed to cater for
different situations during testing (Yamada et 8092), (Kapur et al., 1999), (Pham,
2000), (Zhang and Pham, 2000), (Kapur et al., 20@)atnawi, 2009(b)). As a result
we have a large number of SRGMs each being basedpanticular set of assumptions
that suits a specific testing environment.

All the mentioned SRGMs have been proposed fotgleng phase and it is generally
assumed that operational profile is similar to th&ting phase, which may not be the
case in practice. Very few attempts have been nmdedel the failure phenomenon of
commercial software during its operational use. @hdhe reasons for this can be
attributed to the inability of software engineecs measure the growth in usage of
software while it is in the market. It is unlikeethesting phase where testing-effort
follows a definite pattern (Kenny, 1988), (Shatna@@04).

The most important criterion in a model selectian the validity of the model
assumptions and the relevance of these assumptotise real testing environment.
Besides, the performance of the model in termstofability to regenerate the past
failure data and to predict the future of the filwbservation process are two other
important criteria. The model selection problermaisedious task in the presence of a
large number of SRGMs. To reduce the difficultynaddel selection, flexible modelling
approach has been used in this thesis. The abilithe model to fit different growth
curves with enough variability reflects its fleXity and thus the flexible model is the
one which can represent the fault removal process @ wide range of software testing

environment.

www.manaraa.com

18

2.1.1 A General Description of Continuous Time Mode(Lyu, 1996),
(Musa et al., 1987), (Musa, 2004), (Pham, 2000)fl¢éeger, 2006)

Let [N(t); t>0] denotes a discrete counting process represetitengumulative number
of failures experienced (fault removed) up to timee., N(t), is said to be an NHPP
with intensity functiori\(t), if it satisfies the following conditions:

1. There are no failures experienced at tir@, i.e.,N(t=0)=0 with probability 1.

2. The process has independent increments, i.e. ullmder of failures experienced
in (t, t+At], i.e., N(t+At)-N(t), is independent of the history. Note this asstiom
implies the Markov property that tidt+At) of the process depends only on the
present statdl(t) and is independent of it is past stis{&), for x<t.

3. The probability that a failure will occur during,t¢At] is A(t)At+o(At), i.e.,
PrIN(t+At)-N(t)=1]=\(t)+0o(At). Note that the function &f) is defined as

Litrpo% =0 (2.1)
In practice, it implies that the second or higheeten effects oAt are negligible.

4. The probability that more than one failure will accuring {,t+At] is o(At), i.e.,
Pr[N(t+At)-N(t)>1]=0(At).

Based on these NHPP assumptions, it can be shatrihth probability thaN(t) is a

given integek is expressed by
PIN(t) = k]| = @exp{— m(t)}, k=0 (2.2)

The function m(t) is called the mean value function and descrildles éxpected
cumulative number of failures in (D,Hence,m(t) is a very useful descriptive measure
of the failure behavior.

The function\(t) which called the instantaneous failure intensitgiefined as
- p[N(t + At) - N(t) > 0]

Alt) = I&'ﬁo At (2.3)
Given(t), the mean value functian(t)=E[N(t)] satisfies
m(t) = _[;A(s)ds (2.4)
Inversely, knowingn(t), the failure intensity functiok(t) can be obtained as
At) = % (2.5)

www.manaraa.com

19

Generally, by using different nondecreasing functia(t), we get different NHPP
models.

Define the number of remaining software failuréimet by N(t) and we have that
N(t) = N(e0) = N(t) (2.6)

whereN() is the number of faults which can be detectethbyite time of testing.

It follows from the standard theory of NHPP that thistribution ofN(t) is Poisson with

parameterr(oo)-m(t)], that is

PN () = k= [m(es) ;. m(©)]* exgm(e) -m(t)}, k=0 @2.7)

The reliability function at time, is exponential given by

R(t|t,) = exg~ (m(t +t,) - m(t)} (2.8)
The above conditional reliability functidi(t[t,) is called a software reliability function
based upon a NHPP for a continuous time model.

2.1.2 A General Description of Discrete Time ModdgKapur et al, 2006),
(yamada and Osaki, 1995)

During the software testing phase a software sysseexecuted with a sample of
test cases to remove software faults, which caoftevare failures.

A discrete counting procesd(n);n>0] is said to be an NHPP with mean value
functionm(n), if it satisfies the following conditions:

1. There are no failures experienceda0, i.e.,N(n=0)=0.

2. The counting process has independent incremerds,ghfor any collection
of the numbers of test casesgn,,...,nx where (09;<n.<...<ny), thek random
variablesN(n1),N(nz)-N(n1),...,N(n)-N(ny.1) are statistically independent.

For any of numbers of test casgesndn; where (&ni<n;), we have

m(n,) - m(n,)[*
X

Pl{N(ni)—N(nj):x]:[exd-[mn)-mn)}, x=0 (2.9

The mean value functiom(n) which bounded above and is non-decreasing in
represents the expected cumulative number of faeltscted by test cases. Then the
NHPP model withm(n) is

PIN(n) = x| = @exp{— m(n)}, x=0 (2.10)

www.manaraa.com

20

As a useful software reliability growth index, theult detection rate per fault (per

test case) after the" test case is given by

[mn+9-mn)]
[M(ee) = m(n)]

wherem(wx) represents the expected number of faults to leatenrally detected.

qg(n) = (2.11)

Let N(n) denotes the number of faults remaining in the sysaéter then™ test case
IS given as

N(n) = N(0) = N(n) (2.12)
The expected value af(n) is given by:

h(n) = m(eo) —m(n) (2.13)
which is equivalent to the variance of(n). Suppose thahy faults have been
detected by test cases. The conditional distributionnf), given that N(n)=ng, is

given by

Pr{N(n) = y|N(n)=n,} = {E(;‘!)} exd-{E(M)}] (2.14)

which means a Poisson distribution with mé&#n), independent of.
Now, the probability of no faults detected betwelean™ and the ig+h)™" test cases,

given thatng faults have been detected tyest cases, is given by:
R(h|n) = exd—{m(n+h)-mn)}], n,h=0 (2.15)
The above conditional reliability functioR(h|n)is called a software reliability

function based upon a NHPP for a discrete time rhadé is independent of;.

2.1.3 Comments on Using NHPP

Among the existing models, NHPP models have beeielwiapplied by practitioners.
The application of NHPP to reliability analysis dagfound in elementary literature on
reliability. The calculation of the expected numbéfailures/faults up to a certain point
in time is very simple due to the existence of mealne function. The estimates of the
parameters are easily obtained by using eithemitdod of MLE or of least squares.
Other important advantages of NHPP models whiclulshbe stressed here are that
NHPP’s are closed under superposition and timestoamation. We can easily

incorporate two or more existing NHPP models by simg up the corresponding mean

www.manaraa.com

21

value functions. The failure intensity of the syjmeed process is also just the sum of
the failure intensity of the underlying processes.

It should be noted here that NHPP models are cap#btoping with the case of non-
homogenous testing and hence it is useful for ancir time data as well as for the

execution time data (Xie, 1990).

2.2 Some NHPP based SRGMs

A very large number of continuous time models hesnbdeveloped in the literature to
monitor the fault removal process and measure aedigi the reliability of the software
systems. During testing phase it has been obsdhatdthe relationship between the
testing time and the corresponding number of faeltsoved is either Exponential or S-
shaped or the mix of two. The following are sometltd well-established models:
models due to (Goel and Okumoto, 1979), (Yamaaa. e1983), (Ohba, 1984), (Kapur
and Garg, 1990), (Yamada et al., 1992), and (Phaxh,e.999).

Several SRGMs have been developed in the literadturnmonitor the fault removal
process and measure and predict the reliabilityhef software systems (Xie, 1990),
(Kapur et al., 1999), (Musa et al., 1987), (Pha@99). During testing phase it has been
observed that the relationship between the testimg and the corresponding number of
faults removed is either Exponential or S-shapethermix of two. The following are
some of the SRGMs of interest, which exhibit suehdvior

Model due to (Goel and Okumoto, 1979) (purely exgutial in nature)

Model due to (Yamada et al., 1983) (purely S-shapethture)

Models due to (Ohba, 1983) (flexible in nature)

Model due to (Kapur and Garg, 1990) (purely exmbia&in nature)

ok~ 0N PR

Model due to (Yamada et al., 1992) (purely expoiaéit nature)
6. Model due to (Pham et al., 1999) (flexible in najur

Intensity functions for 3 and 6 have two pointsirdfection, which can be implicitly
attributed to faults of different severity. Severis determined by the time of its
detection/removal. However it should be noted thatsimple faults most of which are
detected in the earlier stage of testing contirmeeside in software till the end of
testing. Therefore when we categorize faults, etxsapple faults, all other faults are
relatively difficult, relatively hard and complexadlts. Though many criteria can be

defined for categorizing faults, the ability of tesises to force the fault detection has

www.manaraa.com

22

been chosen for the purpose in this section. Utldeiassumption that testing is done
uniformly, simple hard and complex faults manifés¢mselves at any time during
testing but are generally concentrated at disting intervals.
Some of the general assumptions (apart from soraeiadpones for specific models
discussed) assumed in the models discussed isdtii®n are as follows:
1. The fault detection / removal phenomenon is moddsfe NHPP.
2. Software is subject to failure during executionseliby faults remaining in the
software.
3. Failure rate of the software is equally affected faults remaining in the
software.
4. The number of faults detected at any time is priogoal to the remaining

number of faults in the software.

The following are models notations

ab Initial fault-content and rate of fault removal gemaining respectively,
a>0,0<b<1.

m(t) Expected number of faults removed int}0,e., the mean value function
of NHPP.

r Ratio of independent faults to the total numbfefaalts in the software,
0<r<1.

ki ks Initial and final values of Fault Exposure Coefnt (FEC) respectively,
0<k <1, 0<k<1.

u, v Rate at which failures are occurring and ratedafittonal fault removals

respectively, 0 <1, 0<v<1.

p Probability of fault removal on a failure, 0 <ql.

a Fault introduction rate per removed faults per time, « > 0.
Constant parameter in the logistic learning-prodesstion 5 > 0.

2.2.1 Exponential Model, (Goel and Okumoto, 1979)

Following differential equation results from assuiop 4, we may write
d
0= b(a-m(t)) (2.16)

Solving the differential Equation (2.16) with thetial conditionm(t=0)=0 gives

www.manaraa.com

23

m(t) = a(1-exp¢-ht)) (2.17)
The above mean value function given in EquatiodRis exponential in nature and
does not provide a good fit to the S-shaped grosutves that generally occur in
Software Reliability. But the model is popular digeits simplicity. Next, we briefly

discuss below some S-shaped SRGMs.

2.2.2 Delayed S-shaped Model, (Yamada et al., 1983)

Fault detection/removal process in this model suased to be a two-phase process
consisting of failure occurrence and it is eventiahoval by isolation. It takes into
account the time taken to isolate and remove d &d so it is important that the data
to be used here should be that of fault isolatibis. further assumed that the number of
faults isolated at any time is proportional to therent number of faults not isolated.
Failure occurrence rate and fault isolation rate fpalt are assumed to be same and
equal tob. Thus

d

ot m, (t) = b(a_ m (t))

(2.18)
%m(t) =b(m, (t) - m(®))

Solving the above system of equations (2.18) wiiitial conditionsm¢(t=0)=0 and
m(t=0)=0,

m(t) = a(l- (1+bt) expt-ht)) (2.19)
Alternately the model can also be formulated asstage process directly as follows
d m(t) = b(t)(a - n‘(t)) whereb(t) = b’t (2.20)
dt ’ 1+bt '

It is observed thab(t)—b ast—o. This model was specifically developed to account
for lag in the failure observation and its subsequemoval. This kind of derivation is

peculiar to software reliability only.

2.2.3 Inflection S-shaped Models

Inflection Shaped Model, (Ohba, 1984)
The model attributes S-shapedness to the mutuandiepcy between software faults.
Other than assumption 3 it is also assumed thatdifisvare contains two types of

faults, namely mutually dependent and mutually peselent. The mutually

www.manaraa.com

24

independent faults are those located on differes@cation paths of the software,
therefore they are equally likely to be detected semoved. The mutually dependent
faults are those faults located on the same exatpith. According to the order of the
software execution, some faults in the executioth pdll not be removed until their
preceding faults are removed.

The ratior is called the inflection parameter (34). If all faults in the software are
mutually independent£1) then the faults are randomly removed and to&/tr curve

is exponential.

According to the assumptions of the model, thetfearhoval intensity can be written as
d
4™ =bOa-m) (2.21)
whereb(t) represents the fault removal rate at tinaed is defined as
b(t) = bg(t) (2.22)

where b represents the fault removal rate in the steadie sindg(t) represents the

inflection function and is defined as

p0=r+a-n"> .23
whereg(t=0)=r andg(t=w)=1
Solving Equation (2.21) under the initial conditiam{t=0)=0 we get
1- bt
mt) =a 1_erXp6) (2.24)
1+Texpebt)

If r=1, the model reduces to the G-O model. For diffex@lues ofr different growth
curves can be obtained and in that sense it ifflex

Alternately the model can also be formulated asstage process directly as follows

b _ b
1+ Sexp(=ht)

%m(t) =b(t)(@a-m(t)), whereb(t) = (2.25)

1+ ;rexp(—bt)
r

r
where ,8 = T
It is observed thdt(t)—b ast—oo.
Inflection Shaped Model, (Bittanti et al., 1988)

The fault removal rates are different during theyeand late stages of software testing

depending upon the nature of faults contained ensthftware. The rate may decrease

www.manaraa.com

25

sharply during testing due to reduction in latesults. On the contrary it can also
happen that the removal of faults increases tHedkihe testing team leading to more
efficient testing and higher failure reports andlfaemovals (often observed when
testing has been done for certain duration). Thgyo#ted this change in fault removal
rate and termed as the Fault Exposure CoefficlB€C| for their SRGM.

The FEC is given as a function of faults removetbfsws
KO =k +(k; ~k) ™ (2.26)

whereK(t=0)=k; andK(t=c0)=k
According to the values &f andk: one can distinguish between the following cases:
1. Constant FECk; =k;
2. Increasing FECKk; <k;
3. Decreasing FEC; >k
4. Vanishing FECk: =0,k >0
The fault removal intensity is given as

d
-&ﬂﬂ)=KGMa-WﬂH (2.27)
Solving Equation (2.27) with the usual initial catneh we get
1-expEk,t
m(t) =a— _kpef) (2.28)

1+ fk " expk;t)

which is similar to Equation (2.24). Again, theustiure of the model is flexible. The
shape of the growth curve is determined by therpatersk; and ki and can be both
exponential and S-shaped for the four cases disdussove.

Alternately the model can also be formulated asstage process directly as follows

K, b

K. —K - -
Kok PO

%m(t) =b(t)(@a—m(t)), whereb(t) = (2.29)

1+

kf _ki

where =

It is observed thdi(t)—b ast—oo.

www.manaraa.com

26

Inflection Shaped Model, (Kapur and Garg, 1992)
This model is based upon the following additioredianption: On a failure observation,
the fault removal process also removes portionhef remaining faults, without their
causing any failures. Based on the assumptionathié f'emoval intensity can be written
as

d m(t

M) =ua-m)] + v%[a —m(t)] (2.30)
Solving Equation (2.30) with the usual initial catnzh, we have

1-exd- (u+vt)

m(t) =a v (2.31)
1+aexr(— (u+w)t)

which is similar to Equations (2.24) and (2.28)pubh they have been derived under
different assumptions. Curves fit) can be exponential or S-shaped depending upon
the values ot andv.

Alternately the model can also be formulated asstage process directly as follows

B b
1+ L exphbt)

%m(t) =b(t)(a-m(t)), whereb(t) = (P*9) (2.32)

1+‘;exp(—(p+q)t>

It is observed thdi(t)—b ast—oo.

2.2.4 Imperfect debugging model, (Kapur and Garg, 990)

In all the preceding models it has been assumeddotha failure, the error causing the
failure is removed with certainty. In reality thisay always not be true. Lt the

probability of effort removal on a failure. Then

d
MO =bpla=m) (2.33)
Solving the differential Equation (2.33) with thetial conditionm(t=0)=0 gives
m(t) = a(1- expt-bpt)) (2.34)

when p=1, the model reduces to the G-O model.

2.2.5 Fault Generation Model, (Yamada et al., 1992)

In general it is considered to be unrealistic iftvgare reliability modelling to assume
that the faults detected by software testing aréeptly removed without introducing

new faults. Software reliability assessment modelth imperfect debugging by

www.manaraa.com

27

assuming that new faults are sometimes introdudezhwhe faults originally latent in a
software system are corrected and removed duri¢etting phase is presented below.
It is assumed that the fault detection rate is priigpnal to the sum of the numbers of

faults remaining originally in the system and faufttroduced by imperfect debugging
%m(t) =b(a(t) - m(t)) (2.35)

where
a(t)=a@+at)
Solving the differential Eq. (2.35) under the boarydconditionm(t=0)=0, we get

m(t) = a{(l— e‘bt) (1— %) + O't} (2.36)

when =0, the model reduces to the Equation (2.17).

2.2.6 PNZModel, (Pham et al., 1999)

A general software reliability model is used toidera model that integrates imperfect
debugging with the learning phenomenon. Learnirguicif testing appears to improve
dynamically in efficiency as one progresses throaglesting phase. Learning usually
manifests itself as a changing fault-detection. rBigblished models and empirical data
suggest that efficiency growth due to learning &@low many growth-curves, from
linear to that described by the logistic function

The expected cumulative number of faults removedha time interval t(t+At) is
proportional to the sum of the numbers of faulteaming originally in the system and

faults introduced by imperfect debugging; satistiesfollowing differential equation:

%m(t) = b(t)(a(t) - m(t)) (2.37)
where

b(t) =2
1+ Bexp(—bt)

a(t)=a@@+at)

Both a(t) and b(t) are time-dependent functions. An increasia@) implies an
increasing total number of faults, and thus refidault generation. Wheredx}) is an
S-shaped curve that can capture the learning ppadfable software testers.

Solving the differential Eq. (2.37) under the boarydconditionm(t=0)=0, we get

www.manaraa.com

28

m(t) = ﬁ{(l— e™) (1— %) + m} (2.38)

According to the values of parameters of the PNZehgiven in Equation (2.38), we
can distinguish between the following cases:
1) When the test skills of the test-team does not amprduring testing (i.e=0).
In this case, the PNZ model reduces to fault ge¢ioeranodel (Yamada et al.,
1992) given in Equation (2.36).
2) When the test skills of the test-team does not awprduring testing (i.ef3=0),
and the no faults introduced during debugging (i=)). In this case, the PNZ

model reduces to exponential model (Goel and Okam&®79) given in
Equation (2.17).

www.manaraa.com

29

Chapter 3
Proposed Model

In general, among various SRGMs, two most imporfaciors affect reliability:
the number of initial faults and the fault remoxatie. The number of initial faults is the
number of faults in the software at the beginnihghe test. This number is usually a
representative measure of software reliability. Wimy the number of residual faults
can help to determine whether the software is si@téor customers to use or not, and
how much more testing resources are requirednlpcavide an estimate of the number
of failures that will eventually be encounteredtbg customers. The fault removal rate,
on the other hand, is used to measure the effeesge of fault removal by test
techniques and test cases. In the literature (@oglOkumoto, 1979), (Yamada et al.,
1983), (Lyu, 1996), (Musa et al., 1987), (Kapuak] 1999), most researchers assume a
constant fault removal rate per fault in derivihgit SRGM. That is, they assume that
all faults have equal probability of being remowiding the software testing process,
and the rate remains constant. In reality, thet feroval rate strongly depends on the
skill of test teams, program size and softwareatabty.

Through real data experiments and analyzes on aeseitware development projects
(Bittanti et al., 1988), (Pham et al., 1999), (Kebal., 2001), (Kapur et al, 2006),
(Shatnawi, 2009(a)), (Shatnawi, 2009(b)), it hasnbebserved the fault removal rate
has three possible trends as time progresses:asinogg decreasing or constants. It
decreases when the software has been used and teptatedly, showing reliability
growth. It can also increase if the testing techagjrequirements are changed, or new
faults are introduced due to new software feataresperfect debugging.

The learning-process of software developers has béen studied (Yamada et al.,
1983), (Ohba, 1984), (Bittanti et al., 1988), (Kamnd Garg, 1992), (Pham, 2000)
(Kapur et al, 2006), (Shatnawi, 2009(a)), (Shatn@&009(b)). The learning is closely
related to the changes in the efficiency of testngng a testing phase. The idea is that
in organizations that have advanced software-psycesters might be allowed to
improve dynamically their testing process as tregrn more about the product. This
could result in a fault removal rate which increaseonotonically over the testing

period. However, there are some pitfalls too. Wdllatesearchers appear to agree upon

www.manaraa.com

30

Is that in practice there often is an apparent gnaw fault removal ability as testing

progresses (Pham et al., 1999).

3.1 Model Development

The PNZ model is revisited and some research dwectare further discussed. Based
on data analyses and model comparisons the authtve PNZ model claimed that this

is the best descriptive and predictive model (Pkaai., 1999), (Pham, 2000).

However, the authors of the PNZ model assumedathat failure, the fault causing the

failure is removed with certainty. In reality thisay always not be true. In other words,
during debugging process, the testing team map@atble to remove the fault perfectly
on the detection of the failure. This phenomendmisyn as imperfect debugging.

The objective is to extend the scope of the PNZ ehad address this issue. Thus,

making it depicts the real-life situation more reiadally.

Model Assumptions

1. Fault removal phenomenon is modelled by NHPP.

2. Software is subject to failures during executionssal by faults remaining in the
software.

3. Overall fault-content is linearly time-dependentieh includes initial fault-content
and the number of faults introduced.

4. Fault removal rate is a S-shaped curve that catughe learning-process of the
software testers, and this function is affectethieyprobability of perfect debugging.

5. Faults can be introduced during the debugging aee., fault generation.

6. Debugging process may not lead to the complete vamaf the faults, i.e., the

debugging process is imperfect

Model Formulation

The expected cumulative number of faults removedha time interval t(t+At) is
proportional to the sum of the numbers of faulteaming originally in the system and

faults introduced by imperfect debugging; satisfresfollowing differential equation:

%m(t) = b(t)(a(t) - m(t)) 3.1)

www.manaraa.com

31

where

b(t) = bp
1+ Bexp(-bpt)

a(t)=a(+ at)
Both a(t) and b(t) are time-dependent functions. An increasia@) implies an
increasing total number of faults, and thus refidault generation. Wheredx}) is an
S-shaped curve that can capture the learning moniethe software testers, and this
function is affected by the probability of faultmeval on a failure.
Solving the differential Eq. (3.1) under the bourydeonditionm(t=0)=0, we get

B

This proposed model given above in Eq. (3.2) iy weteresting from various points of
view. Besides its interpretation as a general fiex5-shaped fault removal model, this
model has the models (Goel and Okumoto, 1979), #0h884), (Bittanti et al., 1988),
(Kapur and Garg, 1990), (Yamada et al., 1992), itiPlea al., 1999) as special cases.
Thus, it is able to model both cases of strictlgrdasing failure intensity and the case
of increasing-and-decreasing failure intensity. ther the exponential model nor the
ordinary delayed S-shaped model can do both.

According to the values of parameters of the pregawodel given in Equation (3.2),
we can distinguish between the following cases:

1) When the debugging process is perfect (pel). In this case, the proposed
model reduces to PNZ model (Pham et al., 1999)ngivé&quation (2.38).

2) When the test skills of the test-team does not avgrduring testing (i.e3=0)
and the debugging process is perfect (pel). In this case, the proposed model
reduces to fault generation model (Yamada et @@2)] given in Equation (2.36).

3) When the test skills of the test-team does not awprduring testing (i.ef3=0),
and the no faults introduced during debugging @e0). In this case, the
proposed model reduces to imperfect debugging m@adgdur and Garg, 1990)
given in Equation (2.34).

4) When the test skills of the test-team does not aw@muring testing (i.ef3=0),
the debugging process is perfect (ip=1), and the no faults introduced during
debugging (i.ep=0). In this case, the proposed model reduces porential
model (Goel and Okumoto, 1979) given in Equatiad {2

www.manaraa.com

32

3.2 Discrete Version of the Proposed Model

The utility of discrete time NHPP based SRGMs catreoundermined. As the software
reliability data are discrete, these models manyesi provide better fit than their
continuous time counterparts. Hence in spite diiatdities in terms of mathematical
complexity, discrete models are proposed regularly.
The assumptions, which are with respect to timeth@ continuous case, can be
reinterpreted in terms of number of test cases.t&biecase can be any duration of time
viz. hour, day, week, month etc. The expected cativd number of faults removed
between the" and a+1)" test cases is proportional to the number of faltsaining
after the execution™ test run, satisfies the following difference edmrat
m(n +1) - m(n) = b(n +1)(a(n) - m(n)) (3.3)

where
__ bp

1+ B(@L-bp)™
a(n) =a(+an)

b(n +1)

Solving, using the method of probability generatibmction (PGF) with initial
conditionm(n=0)=0, after tedious algebraic manipulations, oae get the closed form

solution as given below:

m(n) 2 {(1—(1—bp)“) (1—%)%} (3.4)

1+ B(@1-bp)"
This discrete version of the proposed model givaeova in Eq. (3.4) is very interesting
from various points of view. Besides its interptieta as a general flexible S-shaped
fault removal model, this model has the models (f¥daand Osaki, 1979), (Ohba,
1984), (Kapur et al.,, 1999), (Kapur et al., 200@apur et al., 2008), (Shatnawi,
2009(a)), as special cases. Thus, it is able toeimbdth cases of strictly decreasing
failure intensity and the case of increasing-ancke&sing failure intensity. Neither the

exponential model nor the ordinary delayed S-shapedel can do both.

www.manaraa.com

33

Chapter 4

Model Validation and Comparison Criteria

To check the validity of the models under comparssancluding the proposed
model given in Equation (3.2) to describe the safewreliability growth, it has been
tested on four actual software reliability datas@s) collected from real software
development projects. The first datasets (DS-I) witesd from (Brooks and Motley,
1980), the fault data set is for a radar systemizd 124 KLOC tested for 35 months in
which 1301 faults were removed. The second dat#B&dl), the software was tested
for 38 weeks during which 2456.4 computer hours rehesed and 231 faults where
removed, (Pham, 2000). The third datasets (DSdbjtware for monitoring real-time
control system consist of about 200 modules havimgverage 1,000 lines of a high
level language such as FORTRAN. Since the test detarecorded daily, the test
operation performed in a day are regarded to lestainstance, the data was collected
during 111 days of testing, 481 faults were dete¢Rham, 2000). The fourth datasets
(DS-1V) was collected during 15 month of testing38 faults were detected (Brooks
and Motley, 1980). The datasets were deliberatdlgsen from different testing
environments where the growth curves range fronoeeptial to highly S-shaped.

4.1 Model Validation
The performance of an SRGM is judged by its abildyfit the past software

failure occurrence / fault detection data (goodreédg) and to predict satisfactorily the
future behavior of the software failure occurrehéault detection process from present
and past failure occurrence / fault detection datadictive validity) (Musa et al.,
1987), (Kapur et al., 1999).
Other than these metrics used in comparing SRGMiss4 et al., 1987) have suggested
the following attributes for choosing an SRGM:

e Capability. The model should posses the ability to estimati watisfactory
accuracy metrics needed by the software managers.

e Quality of Assumptions. The model assumptions should be plausible and must

depict the testing environment.

www.manaraa.com

34

e Applicability. A model can be judged as the better one if it banapplied
across software products of different sizes, stinest, platforms and functionalities.

e Simplicity. The data required for an ideal SRGM should be w=mghd
inexpensive to collect. The parameters estimathmulsl not be too complex and is easy

to understand and apply even for persons withotgnske mathematical background.

4.2 Comparison Criteria

The Goodness of Fit Criteria

* The Sum of Squared Error (SSIBSE measures the distance of a model

estimate value from the actual data, as follows
k
SsE =) () - x)° (4.1)
i=1

wherek is the number of observationsyt, is the estimated cumulative number of
faults by timet; obtained from the fitted mean value function ands the total

number of faults removed by tinte Lower value of SSE indicates less fitting error,

thus better goodness of fit.

* The Akaike Information Criterion (AIC)This criterion was first proposed
as SRGM model selection tool by (Khoshogoftaar &dtfoock, 1991) and defined
as

AIC = -2xlog(Max. of Likelihood function)+2x N (4.2)
where N is the number of the parameters used in the madaeler value of AIC
indicates more confidence in the model thus a béttend predictive validity.

* Root Mean Square Prediction Error (RMSPE):

RMSPE = /(Bias? +Variation ?) (4.3)
where Bias is the difference between the observation andigied of number of

failures at any instant of timas known as PEi.(prediction error). The averagPB$ is

known as bias. The standard deviation of prediatimar is known asariation.

 Coefficient of Multiple Determination @ This Goodness-of-fit measure can
be used to investigate whether a significant tremdsts in the observed failure
intensity. We define this coefficient as the radficthe Sum of Squares (SS) resulting
from the trend model to that from a constant maditracted from 1, that is

www.manaraa.com

35

R? =1_M (4.4)
corrected SS

R? measures the percentage of the total variationutatie mean accounted for by
the fitted curve. It ranges in value from 0 to &l values indicate that the model
does not fit the data well. The larger, the bether model explains the variation in
the data.

In other words, we evaluate the performance ofrtiwalels under comparison using
SSE, AIC, RMSPE, and’Rnetrics. For SSE, AIC and RMSPE, the smaller tlegrim
value the better the model fits relative to othedels run on the same dataset (DS). For

R?, the larger the metric value the better.

The Predictive validity Criterion

Predictive validity is defined as the capabilitytbe SRGM to determine the
future fault/failure behavior from present and pstlt/failure behavior (i.e., data).
This capability is significant only when failure levior is changing. This criterion
was proposed by (Musa et al., 1987). Assume thahawe observedy failures by
the end of test tim&. We use the failure data up to ting<ty) to estimate the
parameters ofn(t). Substituting the estimates of the parameterfhénmean value

function yields the estimate of the number of feslim(t,) by t«. The estimate is

compared with the actually observed numbgr This procedure is repeated for
various values ofe. We can visually check the predictive validity piotting the

Relative Prediction Error (RPE) rati§(t,) - x)/ x.) against the normalized test

time (J/ty) (i.e., testing progress ratio). The RPE ratiol veipproach zero a&
approachesty. If the RPE value is negative/positive the modsl said to
underestimate/overestimate the future failure pheson. A value close to zero for
RPE indicates more accurate prediction, thus ma&idence in the model and
better predictive validity. The value of RPE isd&b be acceptable if it is within
+10 percent (Kapur et al., 1999).

www.manaraa.com

36

4.3 Software Reliability Evaluation Measures

Let [N(t); t>0] denotes a discrete counting process represetitengumulative number
of failures experienced or fault removed up to tinteen it can normally be modeled as
an NHPP with the superposed mean value functilh The NHPP model witim(t) is

formulated by

PHN() = X } = [”E(t)l]xf expEm(t)], x, >0 (4.5)

Based on the NHPP model witl(t), the following quantitative reliability measures can

be derived.

Expected Number of Remaining Faults
Let W(t) denotes the number of faults remaining in thigngare at time, then we have
W(t) = N(e0) = N(t) (4.6)
The expected value &(t) is given by
E{W (1)} = m(c0) —m(t) = H (t) (4.7)
which is equivalent to the variance\8ft), wherem(w) represents the expected number

of faults to be eventually removed.

Software Reliability
The probability of no failures occurred (i.e., ramfts removed) in the interval time
(t, t+to] where tp is the mission time, given that failure (fault) has occurred
(removed) by time, is given by

R(t, |t) = expfm(t) - m(t +t,)}, t, =0 (4.8)
which means a reliability function in timg independent ofk. This is called a
conditional reliability function.

4.4 Parameter Estimation Techniques

Parameter estimation is of primary importance iitv&re reliability estimation and
prediction. Once the analytical solutioift) is known for a given model, the parameters
in the solution need to be determined. Parameti@na&ison is achieved by applying
either the estimation method of Least Squares @retimation method of Maximum
Likelihood. The Maximum Likelihood Estimation (MLEhethod is the most important

and widely used estimation technique.

www.manaraa.com

37

Therefore, we adopted the MLE method to estimateutiknown parametera,p,b,a,)
of the models under comparison. Since all the data used are given in the form of
pairs ,x)(i=1,2,...K), wherex; is the cumulative number of faults removed by time

(O<ti<to<...<ty) andt; is the accumulated time spent to remgviaults.

The Likelihood function L for the unknown paramstavith the mean value function

m(t) is given as

e pba A1) =[] ' rf(;;]' ™ x|

Taking natural logarithm of equation (16) we get

mt,) - m,_,))) (4.9)

In L =33(x =) In[m(t,) - mt,)] ~{m(t) - m(t_)} - > In[(x - %) (4.10)

The MLE of the SRGM parameters can be obtainedytsmaximizingL in Equations
(4.9) or (4.10).

For faster and accurate calculations, the stagispackage for social sciences (SPSS)
has been utilized for the purpose. To estimat@#nameters:

1- We opening the SPSS, in the first column weenthie time and in the second column
we write the cumulative number of faults.

2 - Click analyze, regression, and then chose neati

3 — In the Nonlinear Regression window, we chosedigpendent variable the
cumulative number of faults, we write the modetha Model Expression box, and we
click parameters to write the name and correspanstiarting value to each parameters
and then click add

4 — Finally we click continue, then ok, and in théput window we find the parameters

values under the label parameter estimate.

www.manaraa.com

38

Chapter 5

Data Analyses and Model Comparisons

5.1 First Software Development Project

The results of the parameter estimation and thelmgess-of-fit metrics in terms &S,

AIC, RMSPE, andR? of the models under comparison are given in Tatle
According to the estimated values a) ¢the debugging process is perfect and no fault
introduced. It is clearly seen that the proposediehds the best among the models

under comparison in terms 88, AIC, RMSPE andR?.

Table 5.1: Parameters Estimations (for DS-I)

Models under Parameters Estimation Comparison Criteria
Comparison a | b|p|a| B SSE | AIC | RMSPE R?
Exponential * « | * * * *
(Goel & Okumoto, 1979)
Delayed S-shaped o)
(Yamada et al., 1083 1689.4 .090 95014.89504.62 52.85 | .987
Imperfect Debugging| . « | * * * *
(Kapur & Garg, 1992)
Fault Generation * « | 1« * * * *
(Yamada et al., 1992
Inflection S-shaped d
(Ohba, 1984) 1331.5.201| — |—| 20.18| 7212.75%338.10 14.56 | .999
PNz
(Pham et al., 1999) 1327.0.204) — | 0| 21.4 | 7421.15/338.55 14.76 | .999
Proposed 1331.1.208|.966| 0 | 20.16| 7181.33338.09 14.53 | .999

* indicates the model fails to give any plausitdsult

— indicates the parameter is not part of the cornedimg model

The fitting of the proposed model to DS-I is gragathly illustrated in figure 5.1.1 given
below. It is clearly seen that the proposed moteIS-1 excellently.

www.manaraa.com

Cumulaltive Faults

1500 -
I,pi’l""’*"
R
F
1t
1000 - !l
M
>
-
&
4
500 4 /“‘*:'2'
s
e
,.53‘;"
,::E«flii’
0 __d. T T T T
0 7 14 21 28 35

Goodenss-Of-Fit (DS-I)

Testing Time (months)

uuuuuuu 8- ACtual Data
e EStIMAted Values by Proposed Model

Figure 5.1.1. Faults identification curve for (DS-I

39

DS-I are truncated into different proportions arsgédito estimate the parameters of the

proposed model. For each truncation, one valueRPE ratio is obtained and is

graphically illustrated in figure 5.1.2 given belolvis clearly seen that 60% of the total

test time is sufficient to predict the future oétfault removal process reasonably well.

Relative Err¢

-10.00% -

-20.00%-

Predictive Validity (DS-I)

20.00% -

10.00% |

0.00%
50%

LAy T T
60% 70% 80% 90%

Testing Progress Ratio

Predictive Validity Curve

100%

Figure 5.1.2 Predictive validity curve for (DS-I)

www.manaraa.com

40

The fitting of the proposed model to actual renragncumulative number of faults for

DS-I is graphically illustrated in figure 5.1.3.i#t clearly seen that the proposed model

fits the actual data well.

Cumulative Faults

1400 -

1050

700 -

350 -

Expected Remaining Faults (DS-I)

7 14 21 28 35
Testing Time (months)

—&— Actual Data
»»»»»» A Estimated Values by Proposed Model

Figure 5.1.3. Remaining faults curve for (DS-I)

Figure 5.1.4 illustrate the software reliabilityogith for DS-I. It is observed that the

reliability is improving during testing.

Conditional Reliability

0.75

o
al
I

0.25 -

Software Reliability (DS-I)

S —

0 10 20 30 40

Testing Time (months)
= EStiMAted values by Proposed Model

Figure 5.1.4. Reliability curve for (DS-I)

www.manaraa.com

41

5.2 Second Software Development Project

The results of the parameter estimation and thelmgess-of-fit metrics in terms &S,

AIC, RMSPE, andR? of the models under comparison are given in Tate

According to the estimated values aj the debugging process was not perfect and the
total number of faults introduced by tB8" weeks of testing isa(t=38)-a), i.e., (252-
56=196). It is clearly seen that the proposed m@ldie best among the models under
comparison in terms &SE, AIC, RMSPE andR?.

Table 5.2: Parameters Estimations (for DS-II)

Models under Parameters Estimation Comparison Criteria
Comparison a b | p| a| B | SSE | AC|RMSPE R
(Goel Exgiﬂﬁq’gi‘g", 167¢#75:50 .016| — | — | — | 764.43| 203.4D 454 | 995
(Y[;i%‘;de?;ﬁafgeggj) 230.36.101| — | — | — | 4800.43291.17 11.38 | .966
('IL“;’peJIegftG%fg,”ggg]Zg) 475.50 .038| .426| — | — | 764.58| 205.50 4.54 | .996
(YZ?nlg:jgi?zﬁtilogr]QZ) 56.01|.176| — |.092| — | 618.21| 200.20 4.09 | .996
'”ﬂ(egﬂgg,si'gsgz)md 465.44 .017| — | — |.027| 832.47| 203.64 4.73 | .995
(Phamzl:lil.,lggg) 60.10|.160, — |.085| 0 | 590.07| 198.97 3.99 | .996
Proposed 56.05|.176| 1 |.092] 0 | 587.13| 198.48 3.98 | .996

— indicates the parameter is not part of the cornedipg model

The fitting of the proposed model to DS-II is gragattly illustrated in figure 5.2.1 given
below. It is clearly seen that the proposed moteIS-11 excellently.

www.manaraa.com

42

Goodenss-Of-Fit (DS-I)
250 -
P
] s
@ 200 e
E o
£ 150 S
o o xt
> =
= “s.ﬁ
© 100 -) ‘é‘;"
> ‘:"’
£ o~
8] 50 - p 2~
i‘;,
¥
O T T T T 1
0 8 16 24 32 40
Testing Time (weeks)
»»»»»» == A Ctual Data
uuuuuu -4 EStimated Values by Proposed Model

Figure 5.2.1 Faults identification curve for (D$-I1I

DS-Il are truncated into different proportions arsd to estimate the parameters of the
proposed model. For each truncation, one valueRE ratio is obtained and is
graphically illustrated in figure 5.2.2 given belolvis clearly seen that 50% of the total
test time is sufficient to predict the future oétfault removal process reasonably well.

Predictive Validity (DS-I1)

20.00% -

10.00%

0.00% \\

50% 60% % 80% 90% 00%

Relative Errc

-10.00% -

-20.00%-

Testing Progress Ratio

Predictive Validity Curve

Figure 5.2.2 Predictive validity curve for (DS-I1)

www.manaraa.com

43

The fitting of the proposed model to actual renragncumulative number of faults for

DS-Il is graphically illustrated in figure 5.2.3.i$ clearly seen that the proposed model

fits the actual data well.

Cumulative Faults

Expected Remaining Faults (DS-I)

250 -
'n_%a

200 | g A

150 | u_Aa

100 +

50 1 .l.::l“

0 10 20 30 40
Testing Time (weeks)

~~~~~~ B Actual Data
- Estimated Values by Proposed Model

Figure 5.2.3. Remaining faults curve for (DS-II)

Figure 5.2.4 illustrate the software reliabilityogith for DS-II. It is observed that the

reliability is improving during testing.

Conditional Reliability

Software Reliability (DS-II)

0.75

"
.....
,,,,,

©
6]
I

|
q

d

i

0.25 4 |
. H

[

£

g

g

O é T T T 1
0 10 20 30 40

Testing Time (weeks)
,,,,,,,,,,,,,,,, Estimated values by Proposed Model

Figure 5.2.4. Reliability curve for (DS-II)

www.manaraa.com



44

5.3 Third Software Development Project

The results of the parameter estimation and thelmgess-of-fit metrics in terms &S,

AIC, RMSPE, andR? of the models under comparison are given in Tat8e

According to the estimated values aj the debugging process was perfect and no fault
introduced. It is clearly seen that the proposediehds the best among the models
under comparison except for the met8eE the Inflection S-shaped and PNZ model

provide slightly better results.

Table 5.3: Parameters Estimations (for DS-III)

Models under Parameters Estimation Comparison Criteria

Comparison a | bl p|a|f | sSE| AC|RMSPE R
Exponential d
(Goel & Okumoto, 1979)538.10 026 — | — | — |87704.21733.19 28.23 | .965
Delayed S-shaped I X d
(Yamada et al., 1983) 488.10 .066 36194.02645.18 18.14 | .985
Imperfect Debugging | b d
(Kapur & Garg, 1992) 538.10 .027|.952 87711.52735.31] 28.24 | .965
Fault Generation ) o
(Yamada et al., 1992) 465.40 .017| — |.027| — [87959.11732.48 28.27 | .965
Inflection S-shaped it 4
(Ohba, 1984) 484.57.066| — | — |3.65(32411.5%642.53 17.17 | .98
PNz y i

(Pham et al., 1999) 484.57.067| — | 0 |3.65/32430.53642.53 17.17 | .98
Proposed 485.18 .067(.998| 0 |3.66(32439.31642.4 17.17 | .987

— indicates the parameter is not part of the cornediog model

The fitting of the proposed model to DS-IIl is gnagally illustrated in figure 5.3.1
given below. It is clearly seen that the proposediehfits DS-III excellently.

www.manaraa.com



45

Goodenss-Of-Fit (DS-II)

550 -

Cumulaltive Faults

O T T T 1
0 28 56 84 112

Testing Time (days)

uuuuuu -a-— ACtual Data
------- a—— Estimated Values by Proposed Model

Figure 5.3.1. Faults identification curve for (DI§-1

DS-IlI are truncated into different proportions amsked to estimate the parameters of
the proposed model. For each truncation, one vafuRPE ratio is obtained and is
graphically illustrated in figure 5.3.2 given belolvis clearly seen that 60% of the total

test time is sufficient to predict the future oétfault removal process reasonably well.

Predictive Validity (DS-I1I)

20.00% -

10.00% \

0.00% ‘ ‘ ‘ \ \
50% 60% 70% 80% 90% 100%

Relative Errc

-10.00%

-20.00%-

Testing Progress Ratio

Predictive Validity Curve

Figure 5.3.2 Predictive validity curve for (DS-I111)

www.manaraa.com



46

The fitting of the proposed model to actual renragncumulative number of faults for
DS-lll is graphically illustrated in figure 5.3.8.is clearly seen that the proposed model

fits the actual data reasonably well.

Expected Remaining Faults (DS-Il)

500 -

400 -

300 -

200 +

100 -

Cumulative Faults

0 20 40 60 80 100 120

Testing Time (days)
uuuuuu & Actual Data
——a—- Estimated Values by Proposed Model

Figure 5.3.3. Remaining faults curve for (DS-I11)

Figure 5.3.4 illustrate the software reliabilityogith for DS-III. It is observed that the

reliability is improving during testing.

Software Reliability (DS-IIl)

s

0.75

0.25 -

Conditional Reliability
o
(6]

0 37 74 111
Testing Time (days)
e ES timated values by Proposed Model

Figure 5.3.4. Reliability curve for (DS-III)

www.manaraa.com



5.4 Fourth Software Development Project

a7

The results of the parameter estimation and thelmgess-of-fit metrics in terms &S,

AIC, RMSPE, andR? of the models under comparison are given in Table

According to the estimated values aj the debugging process was not perfect and the
total number of faults introduced by th&™ months of testing isa(t=15)-a), (1224-

452=772). It is clearly seen that the proposed rhigdbe best among the models under
comparison in terms &SE, AIC, RMSPE andR?.

Table 5.4: Parameters Estimations (for DS-1V)

Models under Parameters Estimation Comparison Criteria
Comparison a bl p| a | B SSE | AIC | RMSPE R?
(Goel ZXSEB;’SB', 1979)1267-18 138 — | — | — |22006.24286.08 39.63 | .981
(Y'gf:]‘?ézdef;ﬁalpgeg?’ 1058.6 | 413] — | — | — |1049145723.13 86.42 | .97
&“;’pﬂ:%f%%?g?gggzg) 1267.18| .246| .559| — | — |21999.38287.91 39.61 | .981
(YZ?nﬂiji?zﬁtilogngz 536.06 | .472 — | .090| — |5734.96/246.69 20.24 | .99
'”ﬂ(egﬂgg,si'gsgz)'oe‘j 1267.18| .138| — | — 22006.24288.04 39.63 | .981
(PhamF:aTgl., logg) | 45153 89| — | .114|1.087) 5427.24242.39 10.69 | .99
Proposed 451.53 | .894.997| .114|1.087| 5426.85/242.35 19.69 | .99

— indicates the parameter is not part of the cornediog model

The fitting of the proposed model to DS-IV is gragaltly illustrated in figure 5.4.1

given below. It is clearly seen that the proposedehfits DS-IV excellently.

www.manaraa.com



Goodenss-Of-Fit (DS-IV)

Testing Time (months)

——u— Actual Data
e EStimated Values by Proposed Model

1200 - L
e~
R A
g 900 - !i:;.::;:;;zw
= A
cU uif‘*u
L v
_g 600 4 ‘tu
s .
5 300 A
@) ¥
0 . : . . .
0 3 6 9 12 15

Figure 5.4.1. Faults identification curve for (D@}

48

DS-IV are truncated into different proportions amkd to estimate the parameters of

the proposed model. For each truncation, one vafuRPE ratio is obtained and is

graphically illustrated in figure 5.4.2 given belolvis clearly seen that 50% of the total

test time is sufficient to predict the future oétfault removal process reasonably well.

20.00% -

10.00%

Predictive Validity (DS-1V)

0.00%
5(

Relative Err¢

-10.00%-

-20.00%-

% 60% 70% 80% 90%

Testing Progress Ratio

Predictive Validity Curve

1009

Figure 5.4.2 Predictive validity curve for (DS-1V)

www.manaraa.com



49

The fitting of the proposed model to actual rentagncumulative number of faults for

DS-IV is graphically illustrated in Figure 5.4.3. i6 clearly seen that the proposed

model fits the actual data reasonably well.

Cumulative Faults

1200 -

900 -

600 -

300 -

Expected Remaining Faults (DS-IV)

A
.::’\;
A
LN
\‘\2,‘Ai;
w A
] 3
.«gulia»A%»‘“
“-“*:, )h"m%
“l’m.» A“Wl‘
- A,
- A,
0 5 10 15

Testing Time (months)

...... B Actual Data
uuuuuuu A—— Estimated Values by Proposed Model

Figure 5.4.3. Remaining faults curve for (DS-1V)

Figure 5.4.4 illustrate the software reliabilityogrth for DS-IV. It is observed that the

reliability is improving during testing.

Conditional Reliability

Software Reliability (DS-IV)

" e

o
o

0.25 -

V4
,,,,,
F 4

0 5 10
Testing Time (months)
~~~~~~~~~~~~~~~~ Estimated values by Proposed Model

15

Figure 5.4.4. Reliability curve for (DS-1V)

www.manaraa.com

50

Chapter 6

Conclusions

In this thesis, a newly developed continuous SRGM two types of imperfect
debugging and learning process of the testing teamesting progresses has been
presented. The first type, known as fault genematitescribes the situation when each
fault removal attempt increases the fault contdérihe software. The second type, less
damaging, is the case of imperfect debugging whiréetected faults are not removed
completely. Here the numbers of removal attempésnaore than actual fault content
but imperfect debugging does not change the cordkmaults in the software. The
concept of learning has been incorporated in thé famoval rate to show the gain in
experience and improvement in the testing effigrenicthe team as the testing grows.
To model learning, fault removal rate has beenrtaeelogistic function.

The model has been validated and compared witimgngioned NHPP models
by applying them on four fault removal datasetse Tésults of the proposed model are
encouraging in terms of provides improved goodréd# criteria, predictive validity
criterion, and software reliability evaluation meges for software reliability data due to
its applicability and flexibility.

Software reliability evaluation measures can ptevengineers with insightful
information about software development and teséfigrt, and help project managers
make the best decisions in allocating testing effetence, we conclude that the
proposed model not only fit the past well but gdsedict the future reasonably well.

Finally, the proposed model provides a large sdopdurther extensions and
generalizations. For example, incorporation ofitgseffort, classification of software

faults during testing phase, these are being bitougthin a future work.

www.manaraa.com

51

References

ANSI/IEEE, Standard Glossary of Software Engineering Terminolgy, STD-729-
1991, ANSI/IEEE, 1991.

Bittanti, S. Blozern, P. Pedrotti, E. Pozzi, M. @dattolini, A.A Flexible Modelling
Approach in Software Reliability Growth, In: Goos G and HartmanigEds.),
Software Reliability Modeling and Identification pf@nger-Verlag, 1988, pp.
101-140.

Brooks WD and Motley RWAnalysis of Discrete Software Reliability Models
Technical Report (RADC-TR-80-84), Rome Air Develagam Center: New
York, 1980.

Goel, A.L. and Okumoto, KTime Dependent Error Detection Rate Model for
Software Reliability and other Performance MeasureslEEE Transactions on
Reliability, 28(3), 1979, pp. 206-211.

Huang, C.Y. Kuo, S.Y. and Lyu, M.FAn Assessment of Testing-Effort Dependent
Software Reliability Growth Models, IEEE Transactions on Reliability, 56(2),
2007, pp. 198-211.

Kapur, P.K. and Garg, R.BA Software Reliability Growth Model for an Error
Removal PhenomenonSoftware Engineering Journal, 7(4), 1992, pp.-294.

Kapur, P.K. and Garg, R.BOptimal Software Release Policies for Software
Reliability Growth Model under Imperfect Debugging, Recherche
Operationnelle / Operations Research (RAIRO), 8901 pp. 295-305.

Kapur, P.K. Bardhan, A.K. and Shatnawi, Omafthy Software Reliability Growth
Modelling should Define Errors of Different Severity, Quality Control and
Applied Statistics, 49(6), 2004, pp. 699-702.

Kapur, P.K. Garg, R.B and Kumar, Eontributions to Hardware and Software
Reliability , World Scientific, 1999.

Kapur, P.K. Jha, P.C. and Singh, V.Bn the Development of Discrete Software
Reliability Growth Models, In: KB. Misra, (ed.)Handbook of Performability
Engineering, Springer, 2008, pp. 1239-1255.

Kapur, PK. Singh, O. Shatnawi, Omar. And GupterAADiscrete NHPP Model for
Software Reliability Growth with Imperfect Fault Debugging and Fault
Generation, International Journal of Performability Engineeriz(4), 2006, pp.
351-368.

Kapur, P.K. Shatnawi, Omar. Aggarwal, A.G. and Kunika Unified Framework for
Developing Testing Effort Dependent Software Reliabty Growth Models,
WSEAS Transactions on Systems, 8(4), 2009, pp.5241-

Kenny, G.Q.Estimating Defects in Commercial Software during Oprational Use
IEEE Transactions on Reliability, 42(1), 1993, pp7-115.

Khoshogoftaar, T.M. and Woodcock, T.Software Reliability Model Selection: A
Case Study Proc. of the International Symposium on Softw&eliability
Engineering, 1991, pp. 183-191

Kuo, S.N. Huang, C.Y, and Lyu, M.RFramework for Modelling Software
Reliability, using various Testing-Efforts and Faut-Detection Rates IEEE
Transactions on Reliability, R-50(3), 2001, pp. RHD.

Lyu, M. R.Handbook of Software Reliability Engineering McGraw-Hill, 1996.

Musa, J.D. lannino, A. and Okumoto, KSoftware Reliability: Measurement,
Prediction, Applications, McGraw-Hill, 1987.

www.manaraa.com

52

Musa, J.D.Software Reliability Engineering: More Reliable Faser and Cheaper,
2" edition, McGraw-Hill, 2004.

Ohba, M. Software Reliability Analysis Models IBM Journal of Research and

Development, 28, 1984, pp. 428-443.

Pfleeger, S.A. and Atlee, J.MSoftware Engineering: Theory and Practice 3¢
edition, Prentice-Hall, 2006.

Pham, H. Nordmann, L. and Zhang, X.General Imperfect Software-Debugging
Model with S-shaped Fault Detection RatelEEE Transactions on Reliability,
48(2), 1999, pp. 169-175.

Pham, HSoftware Reliability, Springer-Verlag, 2000.

Pressman R.SSoftware Engineering: A Practitioner's Approach, 5" Edition,
McGraw-Hill, 2001.

Shatnawi, OmarMeasuring Software-Operational Reliability: An Interdisciplinary
Modelling Approach, Proc. of the 18th IFIP World Computer Congress—
Student Forum (WCC’2004), Toulouse, France, 20041p5-176.

Shatnawi, Omar(aDiscrete Time Modelling In Software Reliability Engineering: A
Unified Approach, International Journal of Computer Systems Scienog a
Engineering, 24(6), 2009, pp. 71-77.

Shatnawi, Omar(b)Discrete Time NHPP Models for Software ReliabilityGrowth
Phenomenon International Arab Journal of Information Techogy, 6(2),
2009, pp. 124-131.

Shatnawi, OmarKapur, P.K.A Generalized Software Fault Classification Model
WSEAS Transactions on Computers, 7(9), 2008, pp51384.

Yamada, S. and Osaki, ®iscrete Software Reliability Growth Models Applied
Stochastic Models and Data Analysis, Vol. 1, 1985,65-77.

Yamada, S. Ohtera, H. and Narihisa, $tftware Reliability Growth Models with
Testing Effort, IEEE Transactions on Reliability, R-35, 1986, p®-23.

Yamada, S. Ohba, M. and Osaki, &shaped Reliability Growth Modelling for
Software Error Detection, IEEE Transactions on Reliability, R-32, 1983, pp.
475-478.

Yamada, S. Tokuno, K. and Osaki, #perfect Debugging Models with Fault
Introduction Rate for Software Reliability Assessmet, International Journal
of System Science, 23(12), 1992, pp.2253-2264.

Xie M , Software Reliability Modelling, World Scientific, 1991.

Zhang X, and Pham H;omparisons of Nonhomogenous Poisson Process Softeva
Reliability Models and its Applications, International Journal of System
Science, 31(9), 2000, pp.1115-1123.

www.manaraa.com

53

Appendixes

1 - Dataset I: collected during 35 months of testoy 1301 faults were detected

testing time (months) defects found

1 7

2 29

3 61

4 108
5 134
6 159
7 175
8 223
9 259
10 312
11 369
12 408
13 479
14 559
15 624
16 681
17 771
18 831
19 888
20 978
21 1024
22 1081
23 1110
24 1150
25 1166
26 1184
27 1221
28 1236
29 1244
30 1272
31 1278
32 1283
33 1286
34 1289
35 1301

Ol LAC U Zyl_ﬂbl

www.manaraa.com

54

2 — Dataset IlI: collected during 38 weeks of testi 231 faults were detected

testing time (weeks)| defects found
1 15
2 21
3 29
4 37
5 45
6 49
7 53
8 61
9 67
10 69
11 76
12 84
13 87
14 92
15 97
16 105
17 113
18 119
19 131
20 136
21 138
22 143
23 149
24 158
25 159
26 163
27 165
28 169
29 173
30 182
31 188
32 189
33 192
34 198
35 204
36 207
37 221
38 231

Ol LAC U Zyl_ﬂbl

www.manaraa.com

55

3 — Dataset llI: collected during 111 days of testig, 481 faults were detected

testing time (days) defects found

1 5

2 10
3 15
4 20
5 26
6 34
7 36
8 43
9 47
10 49
11 80
12 84
13 108
14 157
15 171
16 183
17 191
18 200
19 204
20 211
21 217
22 226
23 230
24 234
25 236
26 239
27 243
28 252
29 254
30 259
31 263
32 264
33 268
34 271
35 277
36 290
37 309
38 324
39 331
40 346
41 367
42 375
43 381
44 401
45 411

www.manaraa.com

46 414
47 417
48 425
49 430
50 431
51 433
52 435
53 437
54 444
55 446
56 446
57 448
58 451
59 453
60 460
61 463
62 463
63 464
64 464
65 465
66 465
67 465
68 466
69 467
70 467
71 467
72 468
73 469
74 469
75 469
76 469
77 470
78 472
79 472
80 473
81 473
82 473
83 473
84 473
85 473
86 473
87 475
88 475
89 475
90 475
91 475
92 475
93 475

56

www.manaraa.com

57

94 475
95 475
96 476
97 476
98 476
99 476
100 477
101 477
102 477
103 478
104 478
105 478
106 479
107 479
108 479
109 480
110 480
111 481

4 — Dataset IV: collected during 15 month of testig, 1138 faults were detected

testing time (months) defects found
1 203
2 339
3 522
4 569
5 615
6 686
7 740
8 797
9 877
10 941
11 968
12 1010
13 1065
14 1127
15 1138

Ol LAC U Zyl_ﬂbl

www.manaraa.com

58

aile

Latl 555 ey dinall dpnilly gie 32 Y Cosulall Aeail ¢ MaY 5 jld)
e ¢ Ll Claapll Cilaie et ¢) Jiadl allall 138 Al L poe S0 2 55 G sudal
(b Snall dana) Aadail oda Jia ot oW L i€ o) e ¢ A gulald) Akl o328
(el ol el LY callay cgadl 538 (e 2all LCiaal 38 el) i CV s (e e
ClS dpal) DD 5 gl gae ol sk A Tas Lale Jgmy) gl Jall dalasl 1A
Gl Y] Gl e gl sl Ji c¥ gy ddags) Clilesl) dadail @Y glae 2 @l
Jse sai zilaty dadine Copad) oa z3laill 038 Lamal i) A ddtiad) dpuluy)
O Bl el 4ld clime ll aranall aat g 4dl Jaadl G agall (e - Clana
bl Jse o 5 Ll iy) Jalsall aes e) S dim s z3sad 055

o= i piai doa Aasal) Gl 4l o S jas ddag)l 038 B
JSa s Al 5 S0 Lelaa ¢ aiunall a3 uilatiall e POISSONAlee & 53 (o e il
O b elhdl Jay 5 msaill b aladll dlee (e pa (il prsaill ey o
Al Agaal Claa yd Jse Glly Gl o sae A Gl L aanal) 73 sail) Bada
At U 2 7 JEal aerall 23 pall LAdlAL) Gl sk o jlie (e Lgale ganl)
dnflection S-shapedPNZ «J—ic) 535 sall 3l aill Liaa 5 &Y z3lall Jilie
e sane Aiplat Uy) da s (ExponentiakDelayed s-shapedmperfect
il Clpinie G Adlidal loa¥) Gl (e Taee W UA) &5 Gl) Jse by
3o il ey Gl Y G Aandia il Jas S A t-ol.aj‘é.ui BB
claapll Jse i unlia g co satill Lpadla A

P (il manaaill (o Gle 51 asede lganii o8 da s kY] s3] dpad Hl) Laalusdll
Js—o swizd oo tane A ool Uadl) 403 Jane pe ilbina pal) Uad 40 3) 5 0l
b - aal A) cllee 5 Jadl Aasdle G 3 Le 1ol Gl 8 a5) il
Wilae 5SSl e ol aadld) JEE) GV aae diial) gl pall ot Ay
O A 3l eUad¥) dae e AST Bl JEdl EVS dae S 1Y LAY el eUadY) daal
(el i Bl agdll 5 il) alai e Caaesy - adlll mpanail) Alla L)
Ja i) Gala) 2 e Ll Uadl) A1)) aodaiiony ¥ a8 LAY (5358 e il y Ciliual sl

www.manaraa.com

59

camaa il Gy V15 el o s 8 el Uady Jasey o a8 LY Uaall
Oty Y Clana) Ul (5 gine il omecaitll s 8 Uadld) ol 5 Al e ¢ il
a8 oSl eIl Ll) oy) il Uadll el ol (alil) agdl) Caay Jadi (S
A) e o el gy A Y5 oY) (S sl LS ooy Uadl) (5 gine Uadll a3

g gl Ak oS 3355 Uadld) A 3] Jame caleil) JiSiil Loy Una

www.manaraa.com

