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Abstract 
 
 In the present scenario, computer systems are indispensable for society and their 

need and importance are increasing rapidly. To meet this increasing demand, the 

complexity of the software products to construct such computer systems, has enhanced 

to a considerable extent. During the development of such complex software systems, 

many software failures may occur. To reduce these faults, thorough testing of the 

software is required so that a highly reliable software system can be developed. Over 

the past three decades, there have been several attempts at modeling the processes 

associated with software failures based on various underlying assumptions related to 

how software is tested. These models are collectively known as software reliability 

growth model (SRGMs). It is important to note that due to the complexity of software 

design, it is not expected that any single model can incorporate all factors which are 

thought to influence software reliability. 

 In this thesis, we show how beginning with very simple assumptions, non-

homogenous Poisson process (NHPP) type of continuous time SRGM, are gradually 

made more realistic with the incorporation of imperfect debugging, involvement of a 

learning-process in debugging and introduction of new faults. The applicability of the 

resultant generalized model is demonstrated through several actual software reliability 

data sets obtained from different software development projects. The proposed 

generalized model is also checked against different components of the model, including 

existing one (e.g., PNZ, Inflection S-shaped, Fault Generation, Imperfect, Delayed S-

shaped, Exponential) thus highlighting its applicability. The software reliability data 

sets were deliberately chosen from different testing environments where the growth 

curves ranging from purely exponential to highly S-shaped. The results are fairly 

encouraging in terms of goodness of fit, predictive validity and software reliability 

evaluation measures. 

  The major contribution of this thesis is its introduction the concept of two types 

of imperfect debugging during software fault removal phenomenon with logistic fault 

removal rate. Most of the SRGMs discussed in the literature seldom differentiate 

between the failure observation and fault removal processes. In real software 

development environment, the number of failures observed need not be same as the 

number of fault removed. If the number of failures observed is more than the number of 

faults removed then we have the case of imperfect debugging. Due to the complexity of 
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the software system and the incomplete understanding of the software requirements, 

specifications and structure, the testing team may not be able to remove the fault 

perfectly on the detection of the failure and the original fault may remain or get replaced 

by another fault. While the first phenomenon is known as imperfect debugging, the 

second is called fault generation. In case of imperfect debugging the fault-content of the 

software is not changed, but just because of incomplete understanding of the software, 

the detected fault is not removed completely. But in case of fault generation the fault-

content increases as the testing progresses and removal results in introduction of new 

faults while removing old ones. To model learning, fault removal rate has been taken as 

logistic function. Actual software reliability data cited from real software development 

projects have been used to demonstrate the applicability of the proposed model. 

The results of the proposed model are encouraging in terms of goodness of fit 

criteria, predictive validity criterion, and software reliability evaluation measures for 

software reliability data due to its applicability and flexibility. 
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Chapter 1 

Introduction and Overview 
 

Today, computer systems are indispensable in our daily lives, and their importance 

and need have increased immensely. Successful operation of any computer system 

depends largely on its software components. Thus, its very important to ensure the 

quality of the underlying software in the sense that it performs its functions that its 

designed and built for. Software development process is often called software 

development lifecycle (SDLC), because it describes the life of a software product from 

its inception to its implementation. Every software development process includes 

system requirements, as it is input and a delivered product as its output. Many lifecycle 

models have been proposed, based on the tasks involved in developing and maintaining 

software, but they all consists of the following stages: requirement and specification, 

design and coding, testing, and operation and maintenance. Faults can be introduced 

during any of these stages and hence it is not possible to produce fault-free software due 

to human imperfection. A fault occurs when a human makes a mistake, called an error, 

in performing activities related to the software. A fault can reside in any development or 

maintenance system. Faults manifest themselves in terms of failures, when the software 

is executed. A failure is a departure from the system’s required behavior. It can be 

discovered before or after system delivery, during testing, or during operation and 

maintenance. Testing phase in the software development process aims at detecting and 

removing faults, and hence making the software more reliable. It is this phase, which is 

amenable to mathematical modeling.  

The most used way to verify and validate the software is by testing. Software testing 

involves running the software and checking for unexpected behavior in software output. 

The successful test can be considered to be one, which reveals the presence of the latent 

faults. The process of locating the faults and designing the procedures to remove them is 

called the debugging process. The chronology of failure occurrence and fault removals 

can be utilized to provide an estimate of the software reliability and the level of fault 

content. The software reliability model is the tool, which can be used to evaluate the 

software quantitatively, develop test status, schedule status and monitor the change in 

reliability performance.  
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1.1 Software Reliability Engineering 

Software Reliability Engineering (SRE) is a practice that helps you develop 

software that is more reliable, and helps you develop it faster and cheaper. It is a 

standard, proven, widespread best practice that is widely applicable to systems that 

include software. Software reliability engineering is low in cost and its implementation 

has virtually no schedule impact (Musa, 2004). 

Software reliability engineering works by quantitatively characterizing and applying 

two things about the product: the expected relative use of its functions and its required 

major quality characteristics. The major quality characteristics are reliability, 

availability, delivery date and life-cycle cost. In applying software reliability 

engineering, you can vary the relative emphasis you place on these factors. When you 

have characterized use, software reliability engineering guides you in substantially 

increasing development efficiency by focusing resources on functions in proportion to 

use and criticality. It also maximizes test efficiency by making test highly representative 

of use in the field. Increased efficiency increases the effective resource pool available to 

add customer value. Software reliability engineering is centered around a very important 

software attribute: reliability. Software reliability is one of the attributes of software 

quality, a multidimensional property including other customer satisfaction factors like 

functionality, usability, performance, serviceability, capability, installability, 

maintainability and documentation (Musa, 2004).  

Software Reliability should be defined as the probability of failure-free software 

operation for a specified period of time in a specified environment (ANSI/IEEE, 1991). 

Software Reliability is generally accepted as the key factor in software quality since it 

quantifies software failures—the most unwanted event which makes software useless or 

even harmful to the whole system and malfunctioning software may kill people. As a 

result, it is regarded the most important factor contributing to customer satisfaction. In 

fact, ISO 9000-3 specifies field failures as the basic requirement for quality metrics 

(Lyu, 1996). 

Achieving highly reliable software in the customer's perspective is a demanding job to 

all software engineers and reliability engineers.  

Four technical methods are applicable to achieve reliable software systems (Lyu, 

1996):  



www.manaraa.com

 3 

 

•••• Fault Avoidance. The interactive refinement of the user's system requirement, 

the engineering of the software specification process, the use of good software design 

methods, the enforcement of structured programming discipline and the encouragement 

of writing clear code are the general approaches to avoid faults in the software. These 

guidelines have been, and will continue to be, the fundamental techniques in preventing 

software faults from being created.  

Recently, formal methods have been attempted in the research community in attacking 

the software quality problem. In formal-methods approaches, requirement specifications 

are developed and maintained using mathematically trackable languages and tools.  

Current studies in this area have been focused on language issues and environmental 

supports, which include at least the following goals:  

1. Executable specifications for systematic and precise evaluation, 

2. Proof mechanisms for software verification and validation, and 

3. Development procedures which follow incremental refinement for step-by-step 

verification. 

Every work item, be it a specification or a test case, is subject to mathematically 

verification for its correctness and appropriateness.  

Another fault avoidance technique, particularly popular in the software development 

community, is software reuse. The crucial measures of success in this area are the 

capability to prototype and evaluate reusable synthesis techniques. This is why Object-

Oriented Paradigms and Techniques are receiving much attention nowadays—largely 

due to their inherent properties in enforcing software reuse.  

•••• Fault Removal. When formal methods are in full swing, formal design proofs 

might be available to achieve mathematical proof-of-correctness for programs. Also 

fault-monitoring assertions could be employed through executable specifications, and 

test cases could be automatically generated to achieve efficient software verification. 

However, before this happens, practitioners will have to rely mostly on software testing 

techniques to remove existing faults. Microsoft, for example, allocates as many software 

testers as software developers, and employs a "buddy" system which binds the 

developer of every software component with its tester for their daily work. The key 

question to reliability engineers, then, is how to derive testing quality measures (e.g., 

test coverage factors) and establish their relationships to reliability.  
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Another practical fault removal scheme which has been widely implemented in industry 

is formal inspection. A formal inspection is a rigorous process focused on finding faults, 

correcting faults and verifying the corrections. Formal inspection is carried out by a 

small group of peers with a vested interest in the work product during pretest phases of 

the lifecycle. Many companies have claimed its success (Lyu, 1996).  

•••• Fault Tolerance. Fault tolerance is the survival attribute of computing systems 

or software in their ability to deliver continuous service to their users in the presence of 

faults. Software fault tolerance is concerned with all the techniques necessary to enable 

a system to tolerate software faults remaining in the system after its development. These 

software faults may or may not manifest themselves during system operations, but when 

they do, software fault tolerance techniques should provide the necessary mechanisms 

to the software system to prevent system failure from occurring.  

In a single-version software environment, the techniques for partially tolerating software 

design faults include monitoring techniques, atomicity of actions, decision verification 

and exception handling. In order to fully recover from activated design faults, multiple 

versions of software developed via design diversity are introduced, in which 

functionally equivalent yet independently developed software versions are applied in the 

system to provide ultimate tolerance to software design faults. The main approaches 

include the recovery blocks technique, the N-version programming technique and the N 

self-checking programming technique. These approaches have found a wide range of 

applications in the aerospace industry, the nuclear power industry, the health care 

industry, the telecommunications industry and the ground transportation industry.  

•••• Fault\Failure Forecasting. Fault\failure forecasting involves formulation of the 

fault\failure relationship, an understanding of the operational environment, the 

establishment of reliability models, the collection of failure data, the application of 

reliability models by tools, the selection of appropriate models, the analysis and 

interpretation of results, and the guidance for management decisions. This has been the 

main focus of Software Reliability Modelling.  

Due to the intrinsic complexity of modern software systems, software reliability 

engineers have to apply a combination of the above methods for the delivery of reliable 

software systems. These four areas are also the main theme of the state of the art for 

software engineering covering a wide range of disciplines. 
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Who has used Software Reliability Engineering? 

ATandT's International Definity project shows the benefits that result from applying 

SRE and related technologies. In comparison with a previous release that did not use 

these technologies, reliability, customer satisfaction and sales all increased by a factor 

of 10. The system test interval and test costs decreased by a factor of two; project 

development time by 30% and maintenance costs by a factor of 10. Other organizations 

such as Alcatel, Bellcore, CNES (France), ENEA (Italy), Ericsson Telecom, France 

Telecom, Hewlett Packard, Hitachi, IBM, Lockheed-Martin, Lucent Technologies, 

Microsoft, Mitre, Motorola, NASA's Jet Propulsion Laboratory, NASA's Space Shuttle, 

Nortel, Raytheon, Saab Military Aircraft, Tandem Computers, the US Air Force and the 

US Marine Corps have also used SRE profitably (Lyu, 1996). 

 

1.2 Software versus Hardware Reliability 

Software reliability is similar to hardware reliability in that both are stochastic processes 

and can be described by probability distributions. However, software reliability is 

different from hardware reliability in the sense that software does not wear out, burn out 

or deteriorate, i.e., its reliability does not decrease with time. Moreover, software 

generally enjoys reliability growth during testing and operation since software faults can 

be detected and removed when software failures occur. On the other hand, software may 

experience reliability decrease due to abrupt changes of its operational usage or 

incorrect modifications to the software. Software is also continuously modified 

throughout its lifecycle. The malleability of software makes it inevitable for us to 

consider variable failure rates.  

Unlike hardware faults which are mostly physical faults, software faults are design 

faults which are harder to visualize, classify, detect and correct. As a result, software 

reliability is a much more difficult measure to obtain and analyze than hardware 

reliability. Usually hardware reliability theory relies on the analysis of stationary 

processes, because only physical faults are considered. However, with the increase of 

systems complexity and the introduction of design faults in software, reliability theory 

based on stationary process becomes unsuitable to address non-stationary phenomena 

such as reliability growth or reliability decrease experienced in software. This makes 

software reliability a challenging problem which requires an employment of several 

methods to attack (Lyu, 1996).  
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Because of this difference in the effect of faults, software reliability must be defined 

differently from hardware reliability. When hardware is repaired, it is returned to its 

previous level of reliability; the hardware’s reliability is maintained. But when the 

software is repaired, its reliability may actually increase or decrease. Thus, the goal of 

hardware reliability engineering is stability; the goal of software reliability engineering 

is reliability growth (Pfleeger, 2006).  

 

1.3 Software Engineering 

Developing software system is generally a quite complex and time consuming process. 

Moreover, the nature of and complexity of software requirements have drastically 

changed in the last few decades and users all over the world have become much more 

demanding in terms of cost, schedule quality. These three parameters, all being 

desirable, have an apparent contradiction at times which can only be resolved by 

optimum design of software using well established software engineering methodologies. 

Software Engineering Methodologies constitute the framework that guides software 

developers in optimally developing the software systems. These frameworks define the 

different phases of software development (such as planning, requirements analysis, 

design testing and maintenance). The choice of which methodology to use in a specific 

development process is closely related to the size, complexity, reliability and 

maintainability of the software, and to the environment it is supposed to function in. 

Software cost now forms the major component of a computer system’s cost. Software is 

currently expensive to develop and is often unreliable. The goal of the software 

engineering is to face this “software problem”. Software is not just a set of computer 

programs but comprises programs and associated data and documentation.  

The main problems for software development currently are: high cost, low quality, and 

frequent changes causing rework. Software engineering is the discipline that aims to 

provide methods and procedures for developing software systems (Lyu, 1996).  

 

1.3.1 Software Life-Cycle 

A software lifecycle provides a systematic approach to developing, using, operating, 

and maintaining a software system. The standard IEEE Computer Dictionary has 

defined the software lifecycle as: “That period of time in which the software is 
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conceived, developed and used.” There are many different definitions of software 

lifecycle (Pfleeger, 2006), (Pressman, 2001).  

A software lifecycle consists of the following five successive phases: analysis 

(requirements and functional specifications), design, coding, testing and operating. The 

analysis phase is the first step in the software development process. It is also the most 

important phase in the whole process and the foundation of building a successful 

software product. The purpose of the analysis phase is to define the requirements and 

provides specifications for the subsequent phases and activities. The design phase is 

concerned with building the system to perform as required. There are two stages of 

design: system architecture design and detailed design. The system architecture design 

includes system structure and the system architecture document. System structure 

design is the process of partitioning a software system into smaller parts. The system 

architecture document describes system components, subsystems and interfaces. 

Detailed design is about designing the program and the algorithmic details. Coding 

involves translating the design into the code of a programming language, beginning 

when the design document is baselined. Coding comprises of the following activities: 

identifying reusable modules, code editing, code inspection and final test planning. 

Testing is the verification and validation activity for the software product. The goals of 

the testing phase are: to affirm the quality of the product by finding and eliminating 

faults in the program, to demonstrate the presence of all specified functionality in the 

product, and to estimate the operational reliability of the software. During the testing 

phase, program components are combined into the overall software code and testing is 

preformed according to a developed test (Software Verification and Validation) plan. 

The final phase in the software lifecycle is operation. The operating phase usually 

contains activates such as installation, training, support and maintenance (Lyu, 1996). 

 

1.3.2 Software Verification and Validation 

Verification and Validation (VV) are two ways to check whether the design satisfies the 

user’s requirements. According to (ANSI/IEEE, 1991): 

Software Verification is the process of evaluating a system or component to determine 

whether the products of a given development phase satisfy the conditions imposed at the 

start of that phase. Software Validation is the process of evaluating a system or 
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component during or at the end of the development process to determine whether it 

satisfies specified requirements (Lyu, 1996). 

 

1.4 Software Reliability Measurement 

Software reliability measurement includes two types of activities, reliability estimation 

and reliability prediction:  

•••• Reliability Estimation.  This activity determines current software reliability by 

applying statistical inference techniques to failure data obtained during system test or 

operation. This is a measure regarding the achieved reliability from the past until the 

current point. Its main purpose is to assess the current reliability and determine whether 

a reliability model is a good fit in retrospect.  

•••• Reliability Prediction.  This activity determines future software reliability based 

upon available software metrics and measures. Depending on the software development 

stage, prediction involves different techniques:  

When failure data are available (e.g., software is in system test or operation stage), the 

estimation techniques can be used to parameterize and verify software reliability 

models, which can perform future reliability prediction. This definition is also referred 

to as Reliability Prediction . 

When failure data are not available (e.g., software is in the design or coding stage), the 

metrics obtained from the software development process and the characteristics of the 

resulting product can be used to determine reliability of the software upon testing or 

delivery. This is referred to as Early Prediction . 

Most current Software Reliability Models (SRMs) fall in the estimation category to do 

reliability prediction. Nevertheless, a few early prediction models were proposed and 

described in the literature. An SRM specifies the general form of the dependence of the 

failure process on the principal factors that affect it: fault introduction, fault removal 

and the operational environment.  

 

1.4.1 Definition of Software Reliability 

The three major components in the definition of software reliability: time, failure and 

operational environment: 

•••• Time. Reliability quantities are defined with respect to time, although it is 

possible to define them with respect to other bases like program runs. We are concerned 
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with three types of time: the execution time for a software system is the CPU time that is 

actually spent by the computer in executing the software, the calendar time is the time 

people normally experience in terms of days, weeks, months, etc., and the clock time is the 

elapsed time from start to end of computer execution in running the software. In measuring 

clock time, the periods during which the computer is shut down are not counted.  

It is generally accepted that execution time is more adequate than calendar time for 

software reliability measurement and modelling. However, reliability quantities must 

ultimately be related back to calendar time for easy human interpretation, particularly 

when managers, engineers, and customers want to compare them across different 

systems. As a result, translations between calendar time and execution time are 

required. The technique for such translations is described in (Musa et al., 1987). If 

execution time is not readily available, approximations such as clock time, weighted 

clock time, staff working time, or units that are natural to the application, such as 

transactions or test cases executed, may be used. 

•••• Failure. A Software failure is an incorrect result with respect to the specification 

or an unexpected software behavior perceived by the user at the boundary of the 

software system, while a software fault is the identified or hypothesized cause of the 

software failure.  

When a time basis is determined, failures can be expressed in several ways: the 

cumulative failure function, the failure intensity function, the failure rate function and the 

mean time to failure function. The cumulative failure function (also called the mean value 

function) denotes the average cumulative failures associated with each point of time. The 

failure intensity function represents the rate of change of the cumulative failure function. 

The failure rate function (or called the hazard rate, or the rate of occurrence of failures) 

is defined as the instantaneous failure rate at a time t, given that the system has not 

failed up to t. The mean time to failure (MTTF) function represents the expected time 

that the next failure will be observed. (MTTF is also known as MTBF, mean time 

between failures.) Note that the above four measures are closely-related and could be 

translated with one another.  

•••• Operational Profile. The operational profile of a system is defined as the set of 

operations that the software can execute along with the probability with which they will 

occur. An operation is a group of runs which typically involve similar processing.  
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1.4.2 Fault/Failure Data Collection 

Two types of failure data, namely, failure-count data and time-between-failures data, 

can be collected for the purpose of software reliability measurement. Failure-count (or 

failures per time period) data tracks the number of failures observed per unit of time. 

Time-between-failures (or inter-failure times) data tracks the intervals between 

consecutive failures. 

These data are usually used by practitioners when analyzing and predicting reliability 

applications. Some software reliability models can handle both types of data. The time-

between-failures approach involves recording the individual times at which failure 

occurred. The failure-count approach characterized by counting the number of failures 

occurring during a fixed period (e.g., test session, hour, week, day). Using this method, 

the collected data are a count of the number of failures in the interval. The time-

between-failures approach always provides higher accuracy in the parameters estimates 

with current tools but involves more data collection efforts than the interval approach. 

The practitioners must trade off the cost of data collection with the accuracy reliability 

level required by the model predictions.  

Many reliability modelling programs have the capability to estimate model parameters 

from either failure-count or time-between-failures data, as statistical modeling 

techniques can be applied to both (Lyu, 1996), (Musa et al., 1987), (Musa, 2004), 

(Pham, 2000), (Pfleeger, 2006). However, if a program accommodates only one type of 

data, it may be required to transform the other type. If the expected input is failure-

count data, it may be obtained by transforming time-between-failures data to cumulative 

failure times and then simply counting the number of failures whose cumulative times 

occur within a specified time period. If the expected input is time-between-failures data, 

converting the failure-count data can be achieved by either randomly or uniformly 

allocating the failures for the specified time intervals, and then by calculating the time 

periods between adjacent failures.  

 

1.5 Software Reliability Modelling 

There are two main types of software reliability models: the deterministic and the 

probabilistic, more details can be found in (Xie, 1991), (Kapur et al., 1999), (Pham, 

2000). The deterministic model is used to study the number of distinct operands in a 

program as well as the number of errors and the number of machine instructions in the 
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program. Performance measures of the deterministic type are obtained by analyzing the 

program texture and do not involve any random event. The probabilistic model 

represents the failure occurrences and the fault removals as probabilistic events.  

The Probabilistic Software Reliability Models can be classified into different groups 

(Pham, 2000):  

•••• Error Seeding Models. The error seeding group of models estimates the 

number of errors in a program by using the multistage sampling technique. Errors are 

divided into indigenous errors and induced/seeded errors. The unknown number of 

indigenous errors is estimated from the number of induced errors and the ratio of the 

two types of errors obtained from the debugging data.  

•••• Failure Rate Models. The failure rate group of models is used to study the 

program failure rate per fault at the failure intervals. This group of models studies how 

failure rates change at the failure time during the failure intervals. As the number of 

remaining faults changes, the failure rate of the program changes accordingly. Since the 

number of faults in the program is a discrete function, the failure rate of the program is 

also a discrete function with discontinues at the failure times.  

•••• Curve Fitting Models. The curve fitting group models uses statistical 

regression analysis to study the relationship between software complexity and the 

number of faults in a program, the number of changes, or failure rate. This group of 

models finds a functional relationship between dependent and independent variables by 

using the methods of linear regression, nonlinear regression, or time series analysis. The 

independent variables, for example, are the number of modules changed in the 

maintenance phase, time between failures, programmer’s skill, program size, etc. 

•••• Reliability Growth Models. The reliability growth group of models measures 

and predicts the improvement of reliability programs through testing process. The 

growth model represents the reliability or failure rate of a system as a function of time 

or the number of test cases.  

•••• Markov Structure Models. A Markov process has the property that the future 

behavior of the process depends only on the current state and is independent of its past 

history. The Markov structure group of modules is a general way of representing the 

failure process of software. This group of modules can also be used to study the 

reliability and interrelationship of the modules. It is assumed that failures of the 

modules are independent of each other. This assumption seems reasonable at the 
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module level since they can be designed, coded and tested independently, but may not 

be true at the system level.   

•••• Non-Homogeneous Poisson Process (NHPP) Models. The NHPP group of 

models provides an analytical framework for describing the software failure-occurrence 

or fault-removal phenomenon during testing. The main issue in the NHPP model is to 

estimate the mean value function of the cumulative number of failures experienced or 

faults removed up to a certain point in time. This group of models will be reviewed in 

detail in the next chapter.   

 

1.6 Basic Definitions and Acronyms Used 

We give below the definitions of the terms and acronyms used in this Thesis. These 

definitions are cited from (Musa, 1999), (Kapur, 1999), (Pfleeger, 1998) and from 

research papers. 

Bug. A mistake in interpreting a requirement, a syntax error in a piece of code, or the 

(as-yet-unknown) cause of a system crash. 

Calendar Time. Chorological time including time in which a computer may not be 

running. 

Clock Time. Elapsed time from start to end of a program execution including wait time 

on a running computer. 

Debugging Process. The process of analyzing the cause of the software failure, locating 

the faulty part of the software and implementing the necessary steps to remove the 

software fault.  

Deterministic. Possessing the property of having one value at a given time.  

Environment. The set of all possible input states/space with their associated 

probabilities of occurrence.   

Estimation. Determination of software reliability model parameters and quantities from 

fault detection data. 

Machine Execution / CPU Time. Time spent by the processor in executing a program. 

Failure. A departure from the system’s required behavior. It can be discovered before 

or after system delivery, during testing, or during operation and maintenance. 

Failure Intensity. Failures per natural or time unit, an alternative way of expressing 

reliability. 
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Fault. A fault occurs when a human makes a mistake, called an Error , in performing some 

software activity. For example, a designer may misunderstand a requirement and create 

a design that does not match the actual intent of the requirement analyst and the user.  

Fault Density. Faults per line of deliverable executable source code (LOC). 

Homogenous. Possessing characteristics that do not vary with time.  

Imperfect Debugging. When the debugging process does not lead to the removal of the 

cause of the failure.  

Least Square Estimation. A method of parameter estimation in which the parameters 

are selected to minimize the sum of squares of deviation of the estimated failure/fault 

data from the observed ones. 

Maximum Likelihood Estimation. A form of parameter estimation in which the 

parameters are selected that maximize the possibility that the data that have been 

observed could have occurred.  

Mean Value Function. A function that expresses the average value of the number of 

events experienced by a random process at each point in time. 

Prediction. Determination of software reliability model parameters and quantities from 

characteristics of the software product and development process. 

Reliability. Probability that a system or a capability of a system will continue to 

function without failure for a specified period in a specified environment. The period 

may be specified in natural or time units. 

Test Occasions/Cases. A test case can be a single computer test run executed in an 

hour, day, week or even month. Therefore, it includes the computer test run and length 

of time spent to visually inspect the software source code. Whereas, a computer test run 

is a set of software input variables arranged in a certain manner to test the functional 

performance of a particular part of the software system.   

 

Acronyms 

SRGM    Software Reliability Growth Model      SSE        Sum of Squared Errors 

NHPP     Non-Homogeneous Poisson Process     AIC         Akaike Information Criterion  

MLE      Maximum Likelihood Estimate        RPE       Relative Prediction Error 

PGF        Probability Generating Function        DS          Data Set 

RMSPE  Root Mean Square Prediction Error       R2          R Squared 

 



www.manaraa.com

 14 

 

1.7 Structure of the Thesis 

The following is a brief of the remaining Chapters: 

Chapter 2 is divided into two Sections. Section 1 investigates the concepts and the 

description of NHPP based SRGMs. Section 2 reviews some of the well-documented 

and established NHPP based SRGMs.   

Chapter 3 is divided into two Sections. Section 1 presents the proposed model that 

incorporates fault generation and imperfect debugging with learning-process. Section 2 

presents a discrete version of the proposed model.  

Chapter 4 is divided into three Sections. Section 1 presents the validation methods in 

terms of goodness-of-fit and predictive validity metrics, Section 2 derives some 

important software reliability evaluation measures, and Section 3 provides the 

parameters estimation technique. 

Chapter 5 is divided into four Sections. All of these Sections show the applicability of 

the NHPP based SRGMs and the proposed model by applying them on software fault-

detection-count data set cited from four real software development projects in terms of 

goodness of fit, predictive validity and software reliability evaluation measures. The 

results are very encouraging due to their applicability and flexibility as they can capture 

different reliability growth curves ranging from purely exponential to highly S-shaped.  

We conclude the thesis in Chapter 6. 
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Chapter 2 

Literature Review 
 

The importance of modelling and analysis of software failure-occurrence or fault-

removal phenomena has been well recognized and many studies have addressed this 

problem. An important objective of most of these investigations has been to develop 

analytical models for the fault removal phenomena in order to compute quantities of 

interest such as the number of faults removed, the number of remaining faults and the 

software reliability function. Such quantities are useful for planning purposes, in both 

the development and the operational phases of the software systems. In particular, 

software reliability models (SRMs) that describe software failure-occurrence or fault-

removal phenomena in the system testing phase are called software reliability growth 

models (SRGMs). The models are useful in measuring reliability for the quality control 

and testing process control of software development. Many models have been proposed 

by many researchers. A few models have actually been applied to several software 

management tools which aid the software quality or reliability measurement and 

testing–progress control in the testing phase. Among others, Nonhomogeneous Poisson 

process (NHPP) models have been discussed in many applications because the models 

can be easily applied in actual software development. It forms one of the main classes of 

the existing SRGMs, due to its mathematical tractability and wide applicability. NHPP 

models are useful in describing failure processes, providing trends such as reliability 

growth and fault-content. SRGMs consider the debugging process as a counting process 

characterized by the value function of a NHPP. Software reliability can be estimated 

once the mean value function is determined. Model parameters are usually determined 

using either Maximum Likelihood Estimation or Least-square estimation methods. 

The SRGMs are classified into two groups. The first group contains models, which 

use the machine execution (i.e., CPU) time or calendar time as a unit of fault 

detection/removal period. Such models are called continuous time models. The second 

group contains models, which use the number of test occasions/cases as a unit of fault 

detection period. Such models are called discrete time models, since the unit of software 

fault detection period is countable. A test case can be a single computer test run 

executed in an hour, day, week or even month. Therefore, it includes the computer test 
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run and length of time spent to visually inspect the software source code. A large 

number of models have been developed in the first group while there are fewer in the 

second group. Discrete time models in software reliability are important and a little 

effort has been made in this direction. 

 

2.1 NHPP Models 

Stochastic processes are used for the description of a system’s operation over time. 

There are two main types of stochastic processes: continuous and discrete. Among 

discrete processes, counting processes in reliability engineering are widely used to 

describe the appearance of events in time (e.g., failures, number of perfect repairs, etc). 

The simplest counting process is a Poisson process. The Poisson process plays a special 

role to many applications in reliability engineering (Pham, 1999).  

As a general class of well-developed stochastic process model in reliability engineering, 

NHPP models have been successfully used in studying hardware reliability problems. 

They are especially useful to describe failure processes which possess certain trends 

such as reliability growth and deterioration. Therefore, an application of NHPP models 

to software reliability analysis is then easily implemented.  

The model provides the expected number of faults/failures at a given time. (Goel and 

Okumoto, 1979) proposed a exponential model based on the concept the expected 

number of faults removed per unit time is proportional to the current fault content and 

(Yamada and Osaki, 1985) proposed a discrete version of the model. (Yamada et al., 

1983) proposed a delayed S-shaped model based on the concept of failure observation 

and the corresponding fault removal phenomenon and (Kapur et al., 1999) proposed a 

discrete version of the model. (Ohba, 1984) proposed the inflection S-shaped model. 

(Yamada et al., 1985), (Huang, et al., 2007), (Kapur et al., 2009) further proposed 

testing-effort dependent models which assumes the testing-effort to follow either 

exponential, Weibull, logistic, or Rayleigh distribution. (Kapur and Garg, 1990) 

modified exponential model by introducing the concept of imperfect debugging.  

In the real life software development projects, the non-uniform testing is more popular 

and hence the S-shaped growth curve has been observed in many software development 

projects. The cause of S-shapedness has been attributed to different reasons. (Yamada et 

al., 1983) attributed it to time delay between the fault removal and the initial failure 

observation which is result of the unskilledness of the testing team at the early stages of 
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the test. Also, (Ohba, 1984) attributed it to the mutual dependency between software 

faults. (Yamada et al., 1985) ascribed it to the non-uniform distribution of the testing-

effort. (Bittanti et al., 1988) accrued it to the increased fault detection rate later in the 

testing phase. (Kapur et al., 1992) ascribed it to the learning process of the test team.  

Later, few SRGMs were developed taking into account causes of the S-shapedness 

(Kapur et al., 1999), (Pham, 2000), (Shatnawi and Kapur, 2008), (Shatnawi, 2009(a)), 

(Shatnawi, 2009(b)). Also some more exponential models were developed to cater for 

different situations during testing (Yamada et al., 1992), (Kapur et al., 1999), (Pham, 

2000), (Zhang and Pham, 2000), (Kapur et al., 2008), (Shatnawi, 2009(b)). As a result 

we have a large number of SRGMs each being based on a particular set of assumptions 

that suits a specific testing environment.  

All the mentioned SRGMs have been proposed for the testing phase and it is generally 

assumed that operational profile is similar to the testing phase, which may not be the 

case in practice. Very few attempts have been made to model the failure phenomenon of 

commercial software during its operational use. One of the reasons for this can be 

attributed to the inability of software engineers to measure the growth in usage of 

software while it is in the market. It is unlike the testing phase where testing-effort 

follows a definite pattern (Kenny, 1988), (Shatnawi, 2004).  

The most important criterion in a model selection is the validity of the model 

assumptions and the relevance of these assumptions to the real testing environment. 

Besides, the performance of the model in terms of its ability to regenerate the past 

failure data and to predict the future of the failure observation process are two other 

important criteria. The model selection problem is a tedious task in the presence of a 

large number of SRGMs. To reduce the difficulty of model selection, flexible modelling 

approach has been used in this thesis. The ability of the model to fit different growth 

curves with enough variability reflects its flexibility and thus the flexible model is the 

one which can represent the fault removal process over a wide range of software testing 

environment.  
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2.1.1 A General Description of Continuous Time Model (Lyu, 1996), 

(Musa et al., 1987), (Musa, 2004), (Pham, 2000), (Pfleeger, 2006) 

Let [N(t); t≥0] denotes a discrete counting process representing the cumulative number 

of failures experienced (fault removed) up to time t, i.e., N(t), is said to be an NHPP 

with intensity function λ(t), if it satisfies the following conditions: 

1. There are no failures experienced at time t=0, i.e., N(t=0)=0  with probability 1. 

2. The process has independent increments, i.e., the number of failures experienced 

in (t, t+∆t], i.e., N(t+∆t)-N(t), is independent of the history. Note this assumption 

implies the Markov property that the N(t+∆t) of the process depends only on the 

present state N(t) and is independent of it is past state N(x), for x<t. 

3. The probability that a failure will occur during (t,t+∆t] is λ(t)∆t+o(∆t), i.e., 

Pr[N(t+∆t)-N(t)=1]=λ(t)+o(∆t). Note that the function o(∆t) is defined as 

          0
)(

lim
0

=
∆
∆

→∆ t

t
t

ο
                    (2.1) 

In practice, it implies that the second or higher order effects of ∆t are negligible.  

4. The probability that more than one failure will occur during (t,t+∆t] is o(∆t), i.e., 

Pr[N(t+∆t)-N(t)>1]=o(∆t). 

Based on these NHPP assumptions, it can be shown that the probability that N(t) is a 

given integer k is expressed by 

[ ] [ ] { } 0,)(exp
!

)(
)(Pr ≥−== ktm

k

tm
ktN

k

               (2.2) 

The function m(t) is called the mean value function and describes the expected 

cumulative number of failures in (0,t]. Hence, m(t) is a very useful descriptive measure 

of the failure behavior.  

The function λ(t) which called the instantaneous failure intensity is defined as 

                          
[ ]

t

tNttNp
Limt

t ∆
>−∆+=

→∆

0)()(
)(

0
λ                  (2.3) 

Given λ(t), the mean value function m(t)=E[N(t)] satisfies 

∫=
t

dsstm
0

)()( λ                   (2.4)    

Inversely, knowing m(t), the failure intensity function λ(t) can be obtained as  

dt

tdm
t

)(
)( =λ                    (2.5) 



www.manaraa.com

 19 

 

Generally, by using different nondecreasing function m(t), we get different NHPP 

models.  

Define the number of remaining software failure at time t by )(tN  and we have that 

)()()( tNNtN −∞=                   (2.6) 

where N(∞) is the number of faults which can be detected by infinite time of testing.  

It follows from the standard theory of NHPP that the distribution of )(tN  is Poisson with 

parameter [m(∞)-m(t)], that is  

     [ ] [ ] { } 0,)()(exp
!

)()(
)(Pr ≥−∞−∞== ktmm

k

tmm
ktN

k

            (2.7) 

The reliability function at time to is exponential given by 

 ( ){ })()(exp)|( tmttmttR oo −+−=                  (2.8) 

The above conditional reliability function R(t|to) is called a software reliability function 

based upon a NHPP for a continuous time model.  

 

2.1.2 A General Description of Discrete Time Model (Kapur et al, 2006), 

(yamada and Osaki, 1995) 

During the software testing phase a software system is executed with a sample of 

test cases to remove software faults, which cause software failures.  

A discrete counting process [N(n);n≥0] is said to be an NHPP with mean value 

function m(n), if it satisfies the following conditions: 

1. There are no failures experienced at n=0, i.e., N(n=0)=0. 

2. The counting process has independent increments, that is, for any collection 

of the numbers of test cases n1,n2,…,nk where (0<n1<n2<…<nk), the k random 

variables N(n1),N(n2)-N(n1),…,N(nk)-N(nk-1) are statistically independent. 

For any of numbers of test cases ni and nj where (0≤ni≤nj), we have    

        [ ] [ ] [ ]{ } 0,)()(exp
!

)()(
)()(Pr ≥−−

−
==− xnmnm

x

nmnm
xnNnN ji

x
ji

ji      (2.9) 

The mean value function m(n) which bounded above and is non-decreasing in n 

represents the expected cumulative number of faults detected by n test cases. Then the 

NHPP model with m(n) is  

   [ ] [ ] { } 0,)(exp
!

)(
)(Pr ≥−== xnm

x

nm
xnN

x

            (2.10) 



www.manaraa.com

 20 

 

As a useful software reliability growth index, the fault detection rate per fault (per 

test case) after the nth test case is given by  

       
[ ]

[ ] 0,
)()(

)()1(
)( ≥

−∞
−+= n

nmm

nmnm
nq               (2.11) 

where m(∞) represents the expected number of faults to be eventually detected.  

Let )(nN  denotes the number of faults remaining in the system after the nth test case 

is given as  

    )()()( nNNnN −∞=                (2.12) 

The expected value of )(nN  is given by:  

                           )()()( nmmnh −∞=                (2.13)                      

which is equivalent to the variance of )(nN . Suppose that nd faults have been 

detected by n test cases. The conditional distribution of )(nN , given that  N(n)=nd, is 

given by   

      
{ } { }[ ])(exp
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)(
})(|)(Pr{ nE

y

nE
nnNynN

y

d −===              (2.14)    

which means a Poisson distribution with mean E(n), independent of nd.  

Now, the probability of no faults detected between the nth and the (n+h)th test cases, 

given that nd faults have been detected by n test cases, is given by: 

       { }[ ] 0,,)()(exp)|( ≥−+−= hnnmhnmnhR              (2.15) 

The above conditional reliability function R(h|n)is called a software reliability 

function based upon a NHPP for a discrete time model and is independent of nd.  

 

2.1.3 Comments on Using NHPP 

Among the existing models, NHPP models have been widely applied by practitioners. 

The application of NHPP to reliability analysis can be found in elementary literature on 

reliability. The calculation of the expected number of failures/faults up to a certain point 

in time is very simple due to the existence of mean value function. The estimates of the 

parameters are easily obtained by using either the method of MLE or of least squares.  

Other important advantages of NHPP models which should be stressed here are that 

NHPP’s are closed under superposition and time transformation. We can easily 

incorporate two or more existing NHPP models by summing up the corresponding mean 
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value functions. The failure intensity of the superposed process is also just the sum of 

the failure intensity of the underlying processes.  

It should be noted here that NHPP models are capable of coping with the case of non-

homogenous testing and hence it is useful for a calendar time data as well as for the 

execution time data (Xie, 1990).  

 

2.2 Some NHPP based SRGMs 

A very large number of continuous time models has been developed in the literature to 

monitor the fault removal process and measure and predict the reliability of the software 

systems. During testing phase it has been observed that the relationship between the 

testing time and the corresponding number of faults removed is either Exponential or S-

shaped or the mix of two. The following are some of the well-established models: 

models due to (Goel and Okumoto, 1979), (Yamada et al., 1983), (Ohba, 1984), (Kapur 

and Garg, 1990), (Yamada et al., 1992), and (Pham et al., 1999).  

Several SRGMs have been developed in the literature to monitor the fault removal 

process and measure and predict the reliability of the software systems (Xie, 1990), 

(Kapur et al., 1999), (Musa et al., 1987), (Pham, 1999). During testing phase it has been 

observed that the relationship between the testing time and the corresponding number of 

faults removed is either Exponential or S-shaped or the mix of two. The following are 

some of the SRGMs of interest, which exhibit such behavior   

1. Model due to (Goel and Okumoto, 1979) (purely exponential in nature) 

2. Model due to (Yamada et al., 1983) (purely S-shaped in nature) 

3. Models due to (Ohba, 1983) (flexible in nature) 

4. Model due to  (Kapur and Garg, 1990) (purely exponential in nature) 

5. Model due to (Yamada et al., 1992) (purely exponential in nature) 

6. Model due to (Pham et al., 1999) (flexible in nature) 

Intensity functions for 3 and 6 have two points of inflection, which can be implicitly 

attributed to faults of different severity. Severity is determined by the time of its 

detection/removal. However it should be noted that the simple faults most of which are 

detected in the earlier stage of testing continue to reside in software till the end of 

testing. Therefore when we categorize faults, except simple faults, all other faults are 

relatively difficult, relatively hard and complex faults. Though many criteria can be 

defined for categorizing faults, the ability of test cases to force the fault detection has 
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been chosen for the purpose in this section. Under the assumption that testing is done 

uniformly, simple hard and complex faults manifest themselves at any time during 

testing but are generally concentrated at distinct time intervals.  

Some of the general assumptions (apart from some special ones for specific models 

discussed) assumed in the models discussed in this section are as follows: 

1. The fault detection / removal phenomenon is modelled by NHPP. 

2. Software is subject to failure during execution caused by faults remaining in the 

software. 

3. Failure rate of the software is equally affected by faults remaining in the 

software.  

4. The number of faults detected at any time is proportional to the remaining 

number of faults in the software. 

 

The following are models notations 

a, b Initial fault-content and rate of fault removal per remaining respectively, 

a > 0, 0 < b < 1. 

m(t) Expected number of faults removed in (0,t], i.e., the mean value function 

of NHPP. 

r  Ratio of independent faults to the total number of faults in the software,  

0 ≤ r ≤ 1. 

ki ,kf  Initial and final values of Fault Exposure Coefficient (FEC) respectively, 

0 < ki < 1, 0 ≤ kf < 1. 

u, v Rate at which failures are occurring and rate of additional fault removals 

respectively, 0 < u < 1, 0 ≤ v < 1.  

p      Probability of fault removal on a failure, 0 < p ≤ 1. 

α     Fault introduction rate per removed faults per unit time, α ≥ 0. 

β Constant parameter in the logistic learning-process function, β ≥ 0. 

 

2.2.1 Exponential Model, (Goel and Okumoto, 1979) 

Following differential equation results from assumption 4, we may write 

( ))()( tmabtm
dt

d −=                 (2.16) 

Solving the differential Equation (2.16) with the initial condition m(t=0)=0 gives  
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            ( ))exp(1)( btatm −−=               (2.17) 

The above mean value function given in Equation (2.17) is exponential in nature and 

does not provide a good fit to the S-shaped growth curves that generally occur in 

Software Reliability. But the model is popular due to its simplicity. Next, we briefly 

discuss below some S-shaped SRGMs.  

 

2.2.2 Delayed S-shaped Model, (Yamada et al., 1983) 

Fault detection/removal process in this model is assumed to be a two-phase process 

consisting of failure occurrence and it is eventual removal by isolation. It takes into 

account the time taken to isolate and remove a fault and so it is important that the data 

to be used here should be that of fault isolation. It is further assumed that the number of 

faults isolated at any time is proportional to the current number of faults not isolated. 

Failure occurrence rate and fault isolation rate per fault are assumed to be same and 

equal to b. Thus  
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tmtmbtm
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tmabtm
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d
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ff

−=

−=
                (2.18)   

Solving the above system of equations (2.18) with initial conditions mf(t=0)=0 and 

m(t=0)=0,  

         ( ))exp()1(1)( btbtatm −+−=                (2.19) 

Alternately the model can also be formulated as one stage process directly as follows 

        ( ))()()( tmatbtm
dt

d −= ,    where 
bt

tb
tb

+
=

1
)(

2

               (2.20) 

It is observed that b(t)→b as t→∞. This model was specifically developed to account 

for lag in the failure observation and its subsequent removal. This kind of derivation is 

peculiar to software reliability only. 

 

2.2.3 Inflection S-shaped Models 

Inflection Shaped Model, (Ohba, 1984) 

The model attributes S-shapedness to the mutual dependency between software faults. 

Other than assumption 3 it is also assumed that the software contains two types of 

faults, namely mutually dependent and mutually independent. The mutually 
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independent faults are those located on different execution paths of the software, 

therefore they are equally likely to be detected and removed. The mutually dependent 

faults are those faults located on the same execution path. According to the order of the 

software execution, some faults in the execution path will not be removed until their 

preceding faults are removed.  

The ratio r is called the inflection parameter (0<r≤1). If all faults in the software are 

mutually independent (r=1) then the faults are randomly removed and the growth curve 

is exponential.  

According to the assumptions of the model, the fault removal intensity can be written as  

             ( ))()()( tmatbtm
dt

d −=                                (2.21) 

where b(t) represents the fault removal rate at time t and is defined as  

          )()( tbtb φ=                  (2.22) 

where b represents the fault removal rate in the steady state and φ(t) represents the 

inflection function and is defined as  
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where φ(t=0)=r and φ(t=∞)=1  

Solving Equation (2.21) under the initial condition m(t=0)=0 we get  
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If r=1, the model reduces to the G-O model. For different values of r different growth 

curves can be obtained and in that sense it is flexible. 

Alternately the model can also be formulated as one stage process directly as follows 

         ( ))()()( tmatbtm
dt

d −= ,   where 
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where 
r

r−= 1β  

It is observed that b(t)→b as t→∞. 

 

Inflection Shaped Model, (Bittanti et al., 1988) 

The fault removal rates are different during the early and late stages of software testing 

depending upon the nature of faults contained in the software. The rate may decrease 
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sharply during testing due to reduction in latent faults. On the contrary it can also 

happen that the removal of faults increases the skill of the testing team leading to more 

efficient testing and higher failure reports and fault removals (often observed when 

testing has been done for certain duration). They exploited this change in fault removal 

rate and termed as the Fault Exposure Coefficient (FEC) for their SRGM. 

 

The FEC is given as a function of faults removed as follows 

      
a

tm
kkktK ifi
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)()( −+=                (2.26) 

where K(t=0)=ki and K(t=∞)=kf  

According to the values of ki and kf one can distinguish between the following cases: 

1. Constant FEC: ki =kf  

2. Increasing FEC: ki <kf  

3. Decreasing FEC: ki >kf  

4. Vanishing FEC: kf =0, ki >0 

The fault removal intensity is given as  

          )]()[()( tmatKtm
dt

d −=                               (2.27) 

Solving Equation (2.27) with the usual initial condition we get 

            

)exp(1

)exp(1
)(

tk
k

kk

tk
atm

f
i

if

f

−
−

+

−−
=                (2.28) 

which is similar to Equation (2.24). Again, the structure of the model is flexible. The 

shape of the growth curve is determined by the parameters ki and kf and can be both 

exponential and S-shaped for the four cases discussed above. 

Alternately the model can also be formulated as one stage process directly as follows 

   ( ))()()( tmatbtm
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i
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=β  

It is observed that b(t)→b as t→∞. 
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Inflection Shaped Model, (Kapur and Garg, 1992) 

This model is based upon the following additional assumption: On a failure observation, 

the fault removal process also removes portion of the remaining faults, without their 

causing any failures. Based on the assumption the fault removal intensity can be written 

as  

        )]([
)(

)]([)( tma
a

tm
vtmautm

dt

d −+−=                           (2.30) 

Solving Equation (2.30) with the usual initial condition, we have 
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which is similar to Equations (2.24) and (2.28), though they have been derived under 

different assumptions. Curves for m(t) can be exponential or S-shaped depending upon 

the values of u and v. 

Alternately the model can also be formulated as one stage process directly as follows 
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It is observed that b(t)→b as t→∞. 

 

2.2.4 Imperfect debugging model, (Kapur and Garg, 1990) 

In all the preceding models it has been assumed that on a failure, the error causing the 

failure is removed with certainty. In reality this may always not be true. Let p the 

probability of effort removal on a failure. Then 

           ( ))()( tmabptm
dt

d −=                 (2.33) 

Solving the differential Equation (2.33) with the initial condition m(t=0)=0 gives  

        ( ))exp(1)( bptatm −−=                (2.34) 

when  p=1, the model reduces to the G-O model. 

 

2.2.5 Fault Generation Model, (Yamada et al., 1992) 

In general it is considered to be unrealistic in software reliability modelling to assume 

that the faults detected by software testing are perfectly removed without introducing 

new faults. Software reliability assessment models with imperfect debugging by 
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assuming that new faults are sometimes introduced when the faults originally latent in a 

software system are corrected and removed during the testing phase is presented below. 

It is assumed that the fault detection rate is proportional to the sum of the numbers of 

faults remaining originally in the system and faults introduced by imperfect debugging  

                ( ))()()( tmtabtm
dt

d −=                           (2.35) 

where            

    )1()( tata α+=  

Solving the differential Eq. (2.35) under the boundary condition m(t=0)=0, we get 
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when  α=0, the model reduces to the Equation (2.17). 

 

2.2.6 PNZ Model, (Pham et al., 1999) 

A general software reliability model is used to derive a model that integrates imperfect 

debugging with the learning phenomenon. Learning occurs if testing appears to improve 

dynamically in efficiency as one progresses through a testing phase. Learning usually 

manifests itself as a changing fault-detection rate. Published models and empirical data 

suggest that efficiency growth due to learning can follow many growth-curves, from 

linear to that described by the logistic function. 

The expected cumulative number of faults removed in the time interval (t, t+�t) is 

proportional to the sum of the numbers of faults remaining originally in the system and 

faults introduced by imperfect debugging; satisfies the following differential equation:  

              ( ))()()()( tmtatbtm
dt

d −=               (2.37) 

where            
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Both a(t) and b(t) are time-dependent functions. An increasing a(t) implies an 

increasing total number of faults, and thus reflects fault generation. Whereas, b(t) is an 

S-shaped curve that can capture the learning process of the software testers. 

Solving the differential Eq. (2.37) under the boundary condition m(t=0)=0, we get 
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According to the values of parameters of the PNZ model given in Equation (2.38), we 

can distinguish between the following cases: 

1) When the test skills of the test-team does not improve during testing (i.e., β=0). 

In this case, the PNZ model reduces to fault generation model (Yamada et al., 

1992) given in Equation (2.36).  

2) When the test skills of the test-team does not improve during testing (i.e., β=0), 

and the no faults introduced during debugging (i.e, α=0). In this case, the PNZ 

model reduces to exponential model (Goel and Okumoto, 1979) given in 

Equation (2.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 29 

 

Chapter 3 

Proposed Model 
 

In general, among various SRGMs, two most important factors affect reliability: 

the number of initial faults and the fault removal rate. The number of initial faults is the 

number of faults in the software at the beginning of the test. This number is usually a 

representative measure of software reliability. Knowing the number of residual faults 

can help to determine whether the software is suitable for customers to use or not, and 

how much more testing resources are required. It can provide an estimate of the number 

of failures that will eventually be encountered by the customers. The fault removal rate, 

on the other hand, is used to measure the effectiveness of fault removal by test 

techniques and test cases. In the literature (Goel and Okumoto, 1979), (Yamada et al., 

1983), (Lyu, 1996), (Musa et al., 1987), (Kapur el al., 1999), most researchers assume a 

constant fault removal rate per fault in deriving their SRGM. That is, they assume that 

all faults have equal probability of being removed during the software testing process, 

and the rate remains constant. In reality, the fault removal rate strongly depends on the 

skill of test teams, program size and software testability. 

Through real data experiments and analyzes on several software development projects 

(Bittanti et al., 1988), (Pham et al., 1999), (Kuo et al., 2001), (Kapur et al, 2006), 

(Shatnawi, 2009(a)), (Shatnawi, 2009(b)), it has been observed the fault removal rate 

has three possible trends as time progresses: increasing, decreasing or constants. It 

decreases when the software has been used and tested repeatedly, showing reliability 

growth. It can also increase if the testing techniques/requirements are changed, or new 

faults are introduced due to new software features or imperfect debugging. 

The learning-process of software developers has also been studied (Yamada et al., 

1983), (Ohba, 1984), (Bittanti et al., 1988), (Kapur and Garg, 1992), (Pham, 2000) 

(Kapur et al, 2006), (Shatnawi, 2009(a)), (Shatnawi, 2009(b)). The learning is closely 

related to the changes in the efficiency of testing during a testing phase. The idea is that 

in organizations that have advanced software-process, testers might be allowed to 

improve dynamically their testing process as they learn more about the product. This 

could result in a fault removal rate which increases monotonically over the testing 

period. However, there are some pitfalls too. What all researchers appear to agree upon 
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is that in practice there often is an apparent growth in fault removal ability as testing 

progresses (Pham et al., 1999).  

 

3.1 Model Development 

The PNZ model is revisited and some research directions are further discussed. Based 

on data analyses and model comparisons the authors of the PNZ model claimed that this 

is the best descriptive and predictive model (Pham et al., 1999), (Pham, 2000). 

However, the authors of the PNZ model assumed that on a failure, the fault causing the 

failure is removed with certainty. In reality this may always not be true. In other words, 

during debugging process, the testing team may not be able to remove the fault perfectly 

on the detection of the failure. This phenomenon is known as imperfect debugging.  

The objective is to extend the scope of the PNZ model to address this issue. Thus, 

making it depicts the real-life situation more realistically.  

 

Model Assumptions  

1. Fault removal phenomenon is modelled by NHPP. 

2. Software is subject to failures during execution caused by faults remaining in the 

software. 

3. Overall fault-content is linearly time-dependent, which includes initial fault-content 

and the number of faults introduced.  

4. Fault removal rate is a S-shaped curve that can capture the learning-process of the 

software testers, and this function is affected by the probability of perfect debugging. 

5. Faults can be introduced during the debugging process, i.e., fault generation. 

6. Debugging process may not lead to the complete removal of the faults, i.e., the 

debugging process is imperfect. 

 
 

Model Formulation 

The expected cumulative number of faults removed in the time interval (t, t+�t) is 

proportional to the sum of the numbers of faults remaining originally in the system and 

faults introduced by imperfect debugging; satisfies the following differential equation:  

            ( ))()()()( tmtatbtm
dt

d −=                             (3.1) 
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where            
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Both a(t) and b(t) are time-dependent functions. An increasing a(t) implies an 

increasing total number of faults, and thus reflects fault generation. Whereas, b(t) is an 

S-shaped curve that can capture the learning process of the software testers, and this 

function is affected by the probability of fault removal on a failure. 

Solving the differential Eq. (3.1) under the boundary condition m(t=0)=0, we get 
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This proposed model given above in Eq. (3.2) is very interesting from various points of 

view. Besides its interpretation as a general flexible S-shaped fault removal model, this 

model has the models (Goel and Okumoto, 1979), (Ohba, 1984), (Bittanti et al., 1988), 

(Kapur and Garg, 1990), (Yamada et al., 1992), (Pham et al., 1999) as special cases. 

Thus, it is able to model both cases of strictly decreasing failure intensity and the case 

of increasing-and-decreasing failure intensity. Neither the exponential model nor the 

ordinary delayed S-shaped model can do both. 

According to the values of parameters of the proposed model given in Equation (3.2), 

we can distinguish between the following cases: 

1) When the debugging process is perfect (i.e., p=1). In this case, the proposed 

model reduces to PNZ model (Pham et al., 1999) given in Equation (2.38).  

2) When the test skills of the test-team does not improve during testing (i.e., β=0) 

and the debugging process is perfect (i.e., p=1). In this case, the proposed model 

reduces to fault generation model (Yamada et al., 1992) given in Equation (2.36).  

3) When the test skills of the test-team does not improve during testing (i.e., β=0), 

and the no faults introduced during debugging (i.e, α=0). In this case, the 

proposed model reduces to imperfect debugging model (Kapur and Garg, 1990) 

given in Equation (2.34).  

4) When the test skills of the test-team does not improve during testing (i.e., β=0), 

the debugging process is perfect (i.e., p=1), and the no faults introduced during 

debugging (i.e, α=0). In this case, the proposed model reduces to exponential 

model (Goel and Okumoto, 1979) given in Equation (2.17).  
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3.2 Discrete Version of the Proposed Model 

The utility of discrete time NHPP based SRGMs cannot be undermined. As the software 

reliability data are discrete, these models many times provide better fit than their 

continuous time counterparts. Hence in spite of difficulties in terms of mathematical 

complexity, discrete models are proposed regularly.  

The assumptions, which are with respect to time in the continuous case, can be 

reinterpreted in terms of number of test cases. The test case can be any duration of time 

viz. hour, day, week, month etc. The expected cumulative number of faults removed 

between the nth and (n+1)th test cases is proportional to the number of faults remaining 

after the execution nth test run, satisfies the following difference equation: 

          ( ))()()1()()1( nmnanbnmnm −+=−+                            (3.3) 

where            
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Solving, using the method of probability generation function (PGF) with initial 

condition m(n=0)=0, after tedious algebraic manipulations, one can get the closed form 

solution as given below: 
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This discrete version of the proposed model given above in Eq. (3.4) is very interesting 

from various points of view. Besides its interpretation as a general flexible S-shaped 

fault removal model, this model has the models (Yamada and Osaki, 1979), (Ohba, 

1984), (Kapur et al., 1999), (Kapur et al., 2006), (Kapur et al., 2008), (Shatnawi, 

2009(a)), as special cases. Thus, it is able to model both cases of strictly decreasing 

failure intensity and the case of increasing-and-decreasing failure intensity. Neither the 

exponential model nor the ordinary delayed S-shaped model can do both.  
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Chapter 4 

Model Validation and Comparison Criteria 
 

To check the validity of the models under comparisons including the proposed 

model given in Equation (3.2) to describe the software reliability growth, it has been 

tested on four actual software reliability datasets (DS) collected from real software 

development projects. The first datasets (DS-I) was cited from (Brooks and Motley, 

1980), the fault data set is for a radar system of size 124 KLOC tested for 35 months in 

which 1301 faults were removed. The second datasets (DS-II), the software was tested 

for 38 weeks during which 2456.4 computer hours where used and 231 faults where 

removed, (Pham, 2000). The third datasets (DS-III), software for monitoring real-time 

control system consist of about 200 modules having on average 1,000 lines of a high 

level language such as FORTRAN. Since the test data are recorded daily, the test 

operation performed in a day are regarded to be a test instance, the data was collected 

during 111 days of testing, 481 faults were detected (Pham, 2000). The fourth datasets 

(DS-IV) was collected during 15 month of testing, 1138 faults were detected (Brooks 

and Motley, 1980). The datasets were deliberately chosen from different testing 

environments where the growth curves range from exponential to highly S-shaped.  

 

4.1 Model Validation 

The performance of an SRGM is judged by its ability to fit the past software 

failure occurrence / fault detection data (goodness of fit) and to predict satisfactorily the 

future behavior of the software failure occurrence / fault detection process from present 

and past failure occurrence / fault detection data (predictive validity) ( Musa et al., 

1987), (Kapur et al., 1999).  

Other than these metrics used in comparing SRGMs. (Musa et al., 1987) have suggested 

the following attributes for choosing an SRGM: 

•••• Capability. The model should posses the ability to estimate with satisfactory 

accuracy metrics needed by the software managers. 

•••• Quality of Assumptions. The model assumptions should be plausible and must 

depict the testing environment. 
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•••• Applicability.  A model can be judged as the better one if it can be applied 

across software products of different sizes, structures, platforms and functionalities. 

•••• Simplicity. The data required for an ideal SRGM should be simple and 

inexpensive to collect. The parameters estimation should not be too complex and is easy 

to understand and apply even for persons without extensive mathematical background. 

 

4.2 Comparison Criteria 

The Goodness of Fit Criteria 
 

• The Sum of Squared Error (SSE). SSE measures the distance of a model 

estimate value from the actual data, as follows 

     ( )∑
=

−=
k

i
ii xtmSSE

1

2)(ˆ                   (4.1) 

where k is the number of observations, )(ˆ itm  is the estimated cumulative number of 

faults by time ti obtained from the fitted mean value function and xi is the total 

number of faults removed by time ti. Lower value of SSE indicates less fitting error, 

thus better goodness of fit.  
 

• The Akaike Information Criterion (AIC). This criterion was first proposed 

as SRGM model selection tool by (Khoshogoftaar & Woodcock, 1991) and defined 

as 

                        ( ) NfunctionLikelihoodofMaxAIC ×+×−= 2.log2                   (4.2) 

where N is the number of the parameters used in the model. Lower value of AIC 

indicates more confidence in the model thus a better fit and predictive validity. 

• Root Mean Square Prediction Error (RMSPE):  

           ( )22 VariationBiasRMSPE +=        (4.3) 

where Bias is the difference between the observation and prediction of number of 

failures at any instant of time i is known as PEi.(prediction error). The average of PEs is 

known as bias. The standard deviation of prediction error is known as variation. 

• Coefficient of Multiple Determination (R2). This Goodness-of-fit measure can 

be used to investigate whether a significant trend exists in the observed failure 

intensity. We define this coefficient as the ratio of the Sum of Squares (SS) resulting 

from the trend model to that from a constant model subtracted from 1, that is   
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SScorrected

SSresidual
R −= 12                     (4.4) 

 

R2 measures the percentage of the total variation about the mean accounted for by 

the fitted curve. It ranges in value from 0 to 1. Small values indicate that the model 

does not fit the data well. The larger, the better the model explains the variation in 

the data. 

 

In other words, we evaluate the performance of the models under comparison using 

SSE, AIC, RMSPE, and R2 metrics. For SSE, AIC and RMSPE, the smaller the metric 

value the better the model fits relative to other models run on the same dataset (DS). For 

R2, the larger the metric value the better. 

 

The Predictive validity Criterion 
 

Predictive validity is defined as the capability of the SRGM to determine the 

future fault/failure behavior from present and past fault/failure behavior (i.e., data). 

This capability is significant only when failure behavior is changing. This criterion 

was proposed by (Musa et al., 1987). Assume that we have observed xk failures by 

the end of test time tk. We use the failure data up to time te(≤tk) to estimate the 

parameters of m(t). Substituting the estimates of the parameters in the mean value 

function yields the estimate of the number of failures )(ˆ ktm  by tk. The estimate is 

compared with the actually observed number xk. This procedure is repeated for 

various values of te. We can visually check the predictive validity by plotting the 

Relative Prediction Error (RPE) ratio ( )( )kkk xxtm /)(ˆ −  against the normalized test 

time (te/tk) (i.e., testing progress ratio). The RPE ratio will approach zero as te 

approaches tk. If the RPE value is negative/positive the model is said to 

underestimate/overestimate the future failure phenomenon. A value close to zero for 

RPE indicates more accurate prediction, thus more confidence in the model and 

better predictive validity. The value of RPE is said to be acceptable if it is within 

±10 percent (Kapur et al., 1999). 
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4.3 Software Reliability Evaluation Measures 

Let [N(t); t≥0] denotes a discrete counting process representing the cumulative number 

of failures experienced or fault removed up to time t, then it can normally be modeled as 

an NHPP with the superposed mean value function m(t). The NHPP model with m(t) is 

formulated by 

               0)],(exp[
!

)]([
})(Pr{ ≥−== f

f

x

f xtm
x

tm
xtN

f

                              (4.5) 

Based on the NHPP model with m(t), the following quantitative reliability measures can 

be derived. 

 

Expected Number of Remaining Faults 

Let W(t) denotes the number of faults remaining in the software at time t, then we have 

          )()()( tNNtW −∞=                                                         (4.6) 

The expected value of W(t) is given by  

                    )()()()}({ tHtmmtWE =−∞=                                       (4.7) 

which is equivalent to the variance of W(t), where m(∞) represents the expected number 

of faults to be eventually removed. 

 

Software Reliability 

The probability of no failures occurred (i.e., no faults removed) in the interval time 

(t, t+to] where t0 is the mission time, given that xo failure (fault) has occurred 

(removed) by time t, is given by  

                                              0)},()(exp{)|( ≥+−= ooo tttmtmttR                             (4.8) 

which means a reliability function in time t, independent of xo. This is called a 

conditional reliability function. 

 

4.4 Parameter Estimation Techniques 

Parameter estimation is of primary importance in software reliability estimation and 

prediction. Once the analytical solution m(t) is known for a given model, the parameters 

in the solution need to be determined. Parameter estimation is achieved by applying 

either the estimation method of Least Squares or the estimation method of Maximum 

Likelihood. The Maximum Likelihood Estimation (MLE) method is the most important 

and widely used estimation technique.  
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Therefore, we adopted the MLE method to estimate the unknown parameters (a,p,b,α,β) 

of the models under comparison. Since all the data sets used are given in the form of 

pairs (ti,xi)(i=1,2,...,k), where xi is the cumulative number of faults removed by time ti 

(0<t1<t2<…<tk) and ti is the accumulated time spent to remove xi faults.  

 

The Likelihood function L for the unknown parameters with the mean value function 

m(t) is given as 
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Taking natural logarithm of equation (16) we get 
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The MLE of the SRGM parameters can be obtained to by maximizing L in Equations 

(4.9) or (4.10). 

 

For faster and accurate calculations, the statistical package for social sciences (SPSS) 

has been utilized for the purpose. To estimate the parameters:   

1- We opening the SPSS, in the first column we write the time and in the second column 

we write the cumulative number of faults.  

2 - Click analyze, regression, and then chose nonlinear. 

3 – In the Nonlinear Regression window, we chose the dependent variable the 

cumulative number of faults, we write the model in the Model Expression box, and we 

click parameters to write the name and corresponding starting value to each parameters 

and then click add 

4 – Finally we click continue, then ok, and in the output window we find the parameters 

values under the label parameter estimate. 

 

 

 

 

 



www.manaraa.com

 38 

 

Chapter 5 

Data Analyses and Model Comparisons 

 

5.1 First Software Development Project 

The results of the parameter estimation and the goodness-of-fit metrics in terms of SSE, 

AIC, RMSPE, and R2 of the models under comparison are given in Table 5.1. 

 

According to the estimated values of (α) the debugging process is perfect and no fault 

introduced. It is clearly seen that the proposed model is the best among the models 

under comparison in terms of SSE, AIC, RMSPE and R2.  

 

Table 5.1: Parameters Estimations (for DS-I)  

Parameters Estimation Comparison Criteria Models under 

Comparison a b p α β SSE AIC RMSPE R2 

Exponential 
(Goel & Okumoto, 1979) 

* * — — — * * * * 

Delayed S-shaped 
(Yamada et al., 1983) 

1689.4 .090 — — — 95014.89 504.62 52.85 .987 

Imperfect Debugging 
(Kapur & Garg, 1992) 

* * * —  — * * * * 

Fault Generation 
(Yamada et al., 1992) 

* * — * — * * * * 

Inflection S-shaped 
(Ohba, 1984) 

1331.5 .201 — — 20.18 7212.75 338.10 14.56 .999 

PNZ 
(Pham et al., 1999) 

1327.0 .204 — 0 21.4٥ 7421.15 338.55 14.76 .999 

Proposed 1331.1 .208 .966 0 20.16 7181.33 338.09 14.53 .999 

* indicates the model fails to give any plausible result  

─ indicates the parameter is not part of the corresponding model  

 

The fitting of the proposed model to DS-I is graphically illustrated in figure 5.1.1 given 

below. It is clearly seen that the proposed model fits DS-I excellently.  
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Figure 5.1.1. Faults identification curve for (DS-I) 

 

DS-I are truncated into different proportions and used to estimate the parameters of the 

proposed model. For each truncation, one value of RPE ratio is obtained and is 

graphically illustrated in figure 5.1.2 given below. It is clearly seen that 60% of the total 

test time is sufficient to predict the future of the fault removal process reasonably well. 
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Figure 5.1.2 Predictive validity curve for (DS-I) 
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The fitting of the proposed model to actual remaining cumulative number of faults for 

DS-I is graphically illustrated in figure 5.1.3. It is clearly seen that the proposed model 

fits the actual data well. 
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Figure 5.1.3. Remaining faults curve for (DS-I)  

 

Figure 5.1.4 illustrate the software reliability growth for DS-I. It is observed that the 

reliability is improving during testing. 
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Figure 5.1.4. Reliability curve for (DS-I)  
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5.2 Second Software Development Project 

The results of the parameter estimation and the goodness-of-fit metrics in terms of SSE, 

AIC, RMSPE, and R2 of the models under comparison are given in Table 5.2. 

 

According to the estimated values of (α) the debugging process was not perfect and the 

total number of faults introduced by the 38th weeks of testing is (a(t=38)-a), i.e., (252-

56=196). It is clearly seen that the proposed model is the best among the models under 

comparison in terms of SSE, AIC, RMSPE and R2.  

 

Table 5.2: Parameters Estimations (for DS-II)  

Parameters Estimation Comparison Criteria Models under 

Comparison a b p α β SSE AIC RMSPE R2 

Exponential 
(Goel & Okumoto, 1979) 

475.50 .016 — — — 764.43 203.49 4.54 .995 

Delayed S-shaped 
(Yamada et al., 1983) 

230.36 .101 — — — 4800.43 291.17 11.38 .966 

Imperfect Debugging 
(Kapur & Garg, 1992) 

475.50 .038 .426 — — 764.58 205.50 4.54 .996 

Fault Generation 
(Yamada et al., 1992) 

56.01 .176 — .092 — 618.21 200.20 4.09 .996 

Inflection S-shaped 
(Ohba, 1984) 

465.44 .017 — — .027 832.47 203.64 4.73 .995 

PNZ 
(Pham et al., 1999) 

60.10 .160 — .085 0 590.07 198.97 3.99 .996 

Proposed 56.05 .176 1 .092 0 587.13 198.48 3.98 .996 

─ indicates the parameter is not part of the corresponding model  

 

The fitting of the proposed model to DS-II is graphically illustrated in figure 5.2.1 given 

below. It is clearly seen that the proposed model fits DS-II excellently.  
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Figure 5.2.1 Faults identification curve for (DS-II) 

 

DS-II are truncated into different proportions and used to estimate the parameters of the 

proposed model. For each truncation, one value of RPE ratio is obtained and is 

graphically illustrated in figure 5.2.2 given below. It is clearly seen that 50% of the total 

test time is sufficient to predict the future of the fault removal process reasonably well. 
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Figure 5.2.2 Predictive validity curve for (DS-II) 
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The fitting of the proposed model to actual remaining cumulative number of faults for 

DS-II is graphically illustrated in figure 5.2.3. It is clearly seen that the proposed model 

fits the actual data well. 
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Figure 5.2.3. Remaining faults curve for (DS-II) 

 

 

Figure 5.2.4 illustrate the software reliability growth for DS-II. It is observed that the 

reliability is improving during testing. 
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Figure 5.2.4. Reliability curve for (DS-II) 
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5.3 Third Software Development Project 

The results of the parameter estimation and the goodness-of-fit metrics in terms of SSE, 

AIC, RMSPE, and R2 of the models under comparison are given in Table 5.3. 

 

According to the estimated values of (α) the debugging process was perfect and no fault 

introduced. It is clearly seen that the proposed model is the best among the models 

under comparison except for the metric SSE the Inflection S-shaped and PNZ model 

provide slightly better results. 

 

Table 5.3: Parameters Estimations (for DS-III)  

Parameters Estimation Comparison Criteria Models under 

Comparison a b p α β SSE AIC RMSPE R2 

Exponential 
(Goel & Okumoto, 1979) 

538.10 .026 — — — 87704.21 733.19 28.23 .965 

Delayed S-shaped 
(Yamada et al., 1983) 

488.10 .066 — — — 36194.02 645.18 18.14 .985 

Imperfect Debugging 
(Kapur & Garg, 1992) 

538.10 .027 .952 — — 87711.52 735.31 28.24 .965 

Fault Generation 
(Yamada et al., 1992) 

465.40 .017 — .027 — 87959.11 732.48 28.27 .965 

Inflection S-shaped 
(Ohba, 1984) 

484.57 .066 — — 3.65 32411.55 642.53 17.17 .987 

PNZ 
(Pham et al., 1999) 

484.57 .067 — 0 3.65 32430.53 642.53 17.17 .987 

Proposed 485.18 .067 .998 0 3.66 32439.31 642.46 17.17 .987 

─ indicates the parameter is not part of the corresponding model  

 

The fitting of the proposed model to DS-III is graphically illustrated in figure 5.3.1 

given below. It is clearly seen that the proposed model fits DS-III excellently.  
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Figure 5.3.1. Faults identification curve for (DS-III) 

 

DS-III are truncated into different proportions and used to estimate the parameters of 

the proposed model. For each truncation, one value of RPE ratio is obtained and is 

graphically illustrated in figure 5.3.2 given below. It is clearly seen that 60% of the total 

test time is sufficient to predict the future of the fault removal process reasonably well. 
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Figure 5.3.2 Predictive validity curve for (DS-III) 
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The fitting of the proposed model to actual remaining cumulative number of faults for 

DS-III is graphically illustrated in figure 5.3.3. It is clearly seen that the proposed model 

fits the actual data reasonably well. 
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Figure 5.3.3. Remaining faults curve for (DS-III) 

 

Figure 5.3.4 illustrate the software reliability growth for DS-III. It is observed that the 

reliability is improving during testing. 
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Figure 5.3.4. Reliability curve for (DS-III) 



www.manaraa.com

 47 

 

5.4 Fourth Software Development Project 

The results of the parameter estimation and the goodness-of-fit metrics in terms of SSE, 

AIC, RMSPE, and R2 of the models under comparison are given in Table 5.4. 

 

According to the estimated values of (α) the debugging process was not perfect and the 

total number of faults introduced by the 15th months of testing is (a(t=15)-a), (1224-

452=772). It is clearly seen that the proposed model is the best among the models under 

comparison in terms of SSE, AIC, RMSPE and R2. 

 

Table 5.4: Parameters Estimations (for DS-IV)  

Parameters Estimation Comparison Criteria Models under 

Comparison a b p α β SSE AIC RMSPE R2 

Exponential 
(Goel & Okumoto, 1979) 

1267.18 .138 — — — 22006.24 286.08 39.63 .981 

Delayed S-shaped 
(Yamada et al., 1983) 

1058.6١ .413 — — — 104914.5 723.13 86.42 .9٠7 

Imperfect Debugging 
(Kapur & Garg, 1992) 

1267.18 .246 .559 — — 21999.38 287.91 39.61 .981 

Fault Generation 
(Yamada et al., 1992) 

536.06 .472 — .090 — 5734.96 246.69 20.24 .99٥ 

Inflection S-shaped 
(Ohba, 1984) 

1267.18 .138 — — ٠ 22006.24 288.08 39.63 .981 

PNZ 
(Pham et al., 1999) 

451.53 .89١ — .114 1.087 5427.24 242.36 19.69 .99٥ 

Proposed 451.53 .894 .997 .114 1.087 5426.85 242.35 19.69 .99٥ 

─ indicates the parameter is not part of the corresponding model  

 

The fitting of the proposed model to DS-IV is graphically illustrated in figure 5.4.1 

given below. It is clearly seen that the proposed model fits DS-IV excellently.  
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Figure 5.4.1. Faults identification curve for (DS-IV) 

 

DS-IV are truncated into different proportions and used to estimate the parameters of 

the proposed model. For each truncation, one value of RPE ratio is obtained and is 

graphically illustrated in figure 5.4.2 given below. It is clearly seen that 50% of the total 

test time is sufficient to predict the future of the fault removal process reasonably well. 
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Figure 5.4.2 Predictive validity curve for (DS-IV) 
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The fitting of the proposed model to actual remaining cumulative number of faults for 

DS-IV is graphically illustrated in Figure 5.4.3. It is clearly seen that the proposed 

model fits the actual data reasonably well. 
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Figure 5.4.3. Remaining faults curve for (DS-IV) 

 

Figure 5.4.4 illustrate the software reliability growth for DS-IV. It is observed that the 

reliability is improving during testing. 
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Figure 5.4.4. Reliability curve for (DS-IV) 
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Chapter 6 

Conclusions  
 

In this thesis, a newly developed continuous SRGM with two types of imperfect 

debugging and learning process of the testing team as testing progresses has been 

presented. The first type, known as fault generation, describes the situation when each 

fault removal attempt increases the fault content of the software. The second type, less 

damaging, is the case of imperfect debugging where all detected faults are not removed 

completely. Here the numbers of removal attempts are more than actual fault content 

but imperfect debugging does not change the content of faults in the software. The 

concept of learning has been incorporated in the fault removal rate to show the gain in 

experience and improvement in the testing efficiency of the team as the testing grows. 

To model learning, fault removal rate has been taken as logistic function. 

 The model has been validated and compared with the mentioned NHPP models 

by applying them on four fault removal datasets. The results of the proposed model are 

encouraging in terms of provides improved goodness of fit criteria, predictive validity 

criterion, and software reliability evaluation measures for software reliability data due to 

its applicability and flexibility. 

 Software reliability evaluation measures can provide engineers with insightful 

information about software development and testing effort, and help project managers 

make the best decisions in allocating testing effort. Hence, we conclude that the 

proposed model not only fit the past well but also predict the future reasonably well.  

Finally, the proposed model provides a large scope for further extensions and 

generalizations. For example, incorporation of testing-effort, classification of software 

faults during testing phase, these are being brought out in a future work. 
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Appendixes 
 
1 - Dataset I: collected during 35 months of testing, 1301 faults were detected 
 

testing time (months) defects found 
1 7 
2 29 
3 61 
4 108 
5 134 
6 159 
7 175 
8 223 
9 259 
10 312 
11 369 
12 408 
13 479 
14 559 
15 624 
16 681 
17 771 
18 831 
19 888 
20 978 
21 1024 
22 1081 
23 1110 
24 1150 
25 1166 
26 1184 
27 1221 
28 1236 
29 1244 
30 1272 
31 1278 
32 1283 
33 1286 
34 1289 
35 1301 
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2 – Dataset II: collected during 38 weeks of testing, 231 faults were detected 
 

testing time (weeks) defects found 
1 15 
2 21 
3 29 
4 37 
5 45 
6 49 
7 53 
8 61 
9 67 
10 69 
11 76 
12 84 
13 87 
14 92 
15 97 
16 105 
17 113 
18 119 
19 131 
20 136 
21 138 
22 143 
23 149 
24 158 
25 159 
26 163 
27 165 
28 169 
29 173 
30 182 
31 188 
32 189 
33 192 
34 198 
35 204 
36 207 
37 221 
38 231 
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3 – Dataset III: collected during 111 days of testing, 481 faults were detected 
 

testing time (days) defects found 
1 5 
2 10 
3 15 
4 20 
5 26 
6 34 
7 36 
8 43 
9 47 
10 49 
11 80 
12 84 
13 108 
14 157 
15 171 
16 183 
17 191 
18 200 
19 204 
20 211 
21 217 
22 226 
23 230 
24 234 
25 236 
26 239 
27 243 
28 252 
29 254 
30 259 
31 263 
32 264 
33 268 
34 271 
35 277 
36 290 
37 309 
38 324 
39 331 
40 346 
41 367 
42 375 
43 381 
44 401 
45 411 
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46 414 
47 417 
48 425 
49 430 
50 431 
51 433 
52 435 
53 437 
54 444 
55 446 
56 446 
57 448 
58 451 
59 453 
60 460 
61 463 
62 463 
63 464 
64 464 
65 465 
66 465 
67 465 
68 466 
69 467 
70 467 
71 467 
72 468 
73 469 
74 469 
75 469 
76 469 
77 470 
78 472 
79 472 
80 473 
81 473 
82 473 
83 473 
84 473 
85 473 
86 473 
87 475 
88 475 
89 475 
90 475 
91 475 
92 475 
93 475 



www.manaraa.com

 57 

 

94 475 
95 475 
96 476 
97 476 
98 476 
99 476 
100 477 
101 477 
102 477 
103 478 
104 478 
105 478 
106 479 
107 479 
108 479 
109 480 
110 480 
111 481 

 
 
 
 
 
4 – Dataset IV: collected during 15 month of testing, 1138 faults were detected 
 

testing time (months) defects found 
1 203 
2 339 
3 522 
4 569 
5 615 
6 686 
7 740 
8 797 
9 877 
10 941 
11 968 
12 1010 
13 1065 
14 1127 
15 1138 
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 ملخص
 
   

  لا غنى عنها بالنسبة للمجتمع وضرورة وأهمية       الحاسوب ةنظمأيو الحالي ،    في السينار 

د منتجات البرمجيات لبناء مثـل      يلتلبية هذا الطلب المتزايد ، تعق     .  تتزايد بشكل سريع   الحاسوب

 المعقـدة،   يةنظمة البرمج الأأثناء تطويرِ مثل هذه      .هذه الأنظمة الحاسوبية ، عزز إلى حد كبير       

 للحد من هذه العيوب، يتطلب الإختبار الشامل للبرامج، .لات فشل البرامج قَد تَحدثالعديد مِن حا

على مدى العقود الثلاثة الماضية، كانـت       . لذا أنظمة البرامج التي يعول عليها جداً يتم تطويرها        

هناك عدة محاولات لنمذجة العمليات المرتبطة بحالات فشل البرامج على أساس الإفتراضـات             

هذه النماذج هي التي تعرف مجتمعة بنماذج نمو عول         .  المختلفة لكيفية إختبار البرامج    الأساسية

 من المهم أن نلاحظ أنه بسبب تعقيد تصميم البرمجيات، فإنه ليس من المتوقـع أن                .البرمجيات

  . يكون نموذج وحيد يمكن أن تدمج جميع العوامل التي يعتقد بأنها تؤثر على عول البرمجيات

لأطروحة، نعرض كيف نبدأ بالفرضيات البسيطة جـداً، نمـاذج نمـو عـول       في هذه ا  

كل زمن المستمر، جعلها أكثر واقعية بـش      متجانس لل الغير   poissonالبرمجيات من نوع عملية     

تدريجي بدمج التصحيح الناقص مع تضمين عملية التعلم في التصحيح وإدخال أخطاء جديدة، إن          

بت خلال عدة مجموعات بيانات عول البرمجيات الحقيقية التي تم    تطبيق النموذج المعمم الناتج أث    

النموذج المعمم المقترح تم التأكد منـه       . الحصول عليها من مشاريع تطوير البرمجيات المختلفة      

، PNZ ،Inflection S-shapedمثـل،  (مقابل النماذج الأخرى ضمنها النمـاذج الموجـودة   

Imperfect ،Delayed s-shaped ،Exponential ( مجموعـات  . نتيجة لذلك يتأكد تطبيقـه

بيانات عول البرمجيات تم إختيارها عمداً من بيئات الأختبار المختلفة حيـث منحنيـات النمـو                

النتائج مشجعة إلى حد لا بأس به مـن ناحيـة جـودة             .  جداً Sتتراوح من أسي تماماً إلى هيئة       

  .ياتالملائمة، صلاحية التنبوء، ومقاييس تقييم عول البرمج

المساهمة الرئيسية لهذه الأطروحة هي تقديمها مفهوم نوعان من التصحيح الناقص خلال 

معظـم نمـاذج نمـو عـول        . ظاهرة إزالة خطأ البرمجيات مع معدل إزالة الخطأ اللوجـستية         

في . البرمجيات التي نوقشت في السابق نادراً ما يفرق بين ملاحظة الفشل وعمليات إزالة الخطأ             

 البرامج الحقيقية، عدد حالات الفشل الملاحظ ليس من الضروري أن يكون ممـاثلاً              بيئة تطوير 

إذا كان عدد حالات الفشل الملاحظ أكثر من عدد الأخطاء المزالة يكـون          . لعدد الأخطاء المزالة  

بسبب تعقيد نظام البرمجيات والفهم الناقص لمتطلبـات البـرامج،          . لدينا حالة التصحيح الناقص   

والتركيب، فريق الإختبار قد لا يستطيع إزالة الخطأ تماماً عنـد إكتـشاف الفـشل               المواصفات  
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في حين أن الظاهرة الأولى تعرف بالتـصحيح        . والخطأ الأصلي قد يبقى أو يستبدل بخطأ أخر       

في حالة التصحيح الناقص محتوى خطأ البرمجيات لا يتغير، . الناقص، تسمى الثانية توليد الخطأ

ولكن فـي حالـة     .  إزالتها بالكامل  اقص للبرامج، الخطأ المكتشف لم يتم     فهم الن لكن فقط بسبب ال   

توليد الخطأ محتوى الخطأ يزداد كما التقدم في الإختبار والإزالة ينتج أخطاء جديدة عند إزالـة                

  .لتشكيل التعلم، معدل إزالة الخطأ تؤخذ كوظيفة لوجستية. خطأ قديم

 

 

 

  


